
l._¢cembcr1993 Report No. STAN-CS-TR-94-1514

Also numbered KSL 9.:_-48

illfilllllllilllllll[lllllllll
PBg_-a499a4

Load Balancing Using Time Series Analysis for Soft Real

Time System_ "withStatistically Periodic Loads

by

Max Hailperin

o_

i 'D'-V]',.:_: '*,, ,,"_. :'. :'..::_:,_":_._-."_.....I

l _Z:._.....r_.,.:,:" _.., ;_...',::'_..:,..,.,,,,;_:,_:

Department of Computer Science

Stanford University

Stanford, California 94305

19£70610098
RI.PXOD_ClO Iv

.. _ ._lllllT/lJilnllff'4/_1_llet=O

,'%lbttn_ TIIC_tl_[Jl'Itof ff',lf,llf _dhltll[f:il
lhn'.'n _'¢W4, V, ld*., t t_"rll I

LOAD BALANCING USING TIME SERIES ANALYSIS

FOR SOFT REAL TIME SYSTEMS WITH

STATISTICALLY PERIODIC LOADS

A DISSERTATION.

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Max Hailperin

December, 1993

L_

r_

De_er_h._:,1993 ,1 Dissertation
'4.Tn'UIJUMS4u,,,d.... " S. _ llumlas

Load BalancingUsing Tlme Series Analysis for Soft Real DARPA C.F30502-85-C-0012
Time Systems with Statistlcal]yPeriodic Loads DARPA C MDAg03-83-C-0335

....... _, NASA C NCC-2-220-S1
4. _TWOIKS) -

Max Hatlpertn

7. muomvmcmrwmzA_o_ _l(s)_mnAoo_s_lsl
Stanford University,S_anf_rd CA

_S_tI_G/MO_OmO JaEI_'VNAV4IS)_OADDIES_IS)

Defense Advanced _esearch ProJec2s Agency

NASA Ames Research Center

i I |

lt. 14,_PtAM|N?&RY NOT|S

ill[illicit _M|IR

AI|NCY ll_N_.,7 ItUM_It

I II I

t|a, OOSlIUI_llON IAVAli.411tUTY STAI'IIMI_NT

I II

lS.M_'aA¢l'(Ma_m_n_wwi_
This _hesis provides design and analysis of techniques for global load balancing
on ensemble architecturesrunning soft-real-timeob_ect-orlentedapplications
with statisticallyperiodic}oads. It focuses on estimating the instantaneous
average load over el] the processingelements.

The maJo_ contributionis the use of explicit stochastic process models for both
_he 1oa_ing and the averagingitself, These _odels are explited via statistical
time-seriesanalysis and Ba_esla_ inference¢o provide improved_verage load
estlma_es,and thus to _aci11¢ateglobal load balancing.

This thesis explains the distributedalgorithmsused and provides some optimality
results. I_ also describesthe algorlthms' implementationand gives performance
resu1¢s from sJn_lation. These results show that our _echniques a11ow more
accurate estimation of the global system lo_dlng, resultlng in fewer obJec_ mlgratior
than local methods. Our method is sho_n t, ovlde superior performance,relatlve
not only to _tatic load-balancing schemes but also to _an_ adaptive methods.

load balancing, ttme-serles analysis, object migration, 145
load estimation, statistically perto_lc loads _,.mq ¢o_w

OPN_IPQIIt Q#?N'ff, PA41 O¢;AeSI/UtC'r

U_CLASSIFI[D UNCLASSIFIED _CLASSIFIED

O Copyright 1993 by Max Hailperin

All Rights Reserved

ii

I certify, that I have read this dissertation and that in

my opinicn it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Anoop Gupta

(PrincipalAdviser)

I certifythat I have read thisdissertationand thatin

my opinionitisfullyadequate,in scopeand quality,as

a dissertationforthe degreeofDoctor ofPhilosophy:

John L. Hennessy

I certifythat I have read thisdissertationa_d that in

my opinionitisfullyadequat,e,in scopeand quality,as

a dissertationforthe degreeofDoctor ofPhilosophy.

Harold Brown

Approved for the UniversityCommittee on Graduate

Studies:

,°°

111

Abstract

This thesisprovidesdesignand analysisof techniquesforgloballo,_ibalancingon

ensemble architecturesrunning soft-real-timeobject-orientedapplicationswith eta.

tisticallyperiodicloads.Itfocuseson estimatingthe instantaneousaverageloadover

allthe processingelements.

The major contributionisthe use ofexplicitstochasticprocessmodels forboth

the lomlingand the averagingitself.These models are exploitedvia statisticaltime-

seriesanalysisand Bayesian inferenceto provideimproved averageloadestimates,

and thusto facilitategloballoadbalancing.

This thesisexplainsthe distributedalgorithmsused and providessome optimal-

_tyresults.Italsodescribesthe algorithms'implementationand givesperformance

resuksfrom simulstion.These resultsshow thatour techniquesallowmore accurate

estimationofthe globalsystem loading,resultinginfewerobjectmigrationsthan lo-

calmethods. Our method isshown toprovidesuperiorperformance,relativenot only

to staticload-balancingschemes but alsoto many adaptiveload-balancingmethods.

Re, altsfrom a preliminm'yanalysisof another system and from simulationwith a

syntheticloadprovide.someevidenceof more generalapplicability.

iv

Acknowledgements

I would liketo thank not only my advisor,Anoop Gupta, but alsomy othertwo

mentorswho worked closelywithme on thisproject:Bruce Delagiand HaroldBrown.

Itwas they who providedthe applicationand architecturalcontext,who suggested

the generalresearchareaof loazlbalancingto me, and who encouraged me through

the fouryears I spent working on thisproblem at Stanford. (In fact,Harold has

egged me on in the threeyearssinceIleftStanfordas well,becauseIstillremember

hispartingwords to me: "Don'tbecome another") Of courseitgoes without

sayingthat Anoop was alsoinstrumentalin thisprocess. In particular,itwas he

who was most closelycriticalofmy researchmethodology and more recentlyof my

exposition.Ithank him forthisconstructivecriticism,and forthe boundlesspatience

I'vegivenhim opportunitytoexhibit.Harold,Bruce,and John Hennessy alsoshowed

theirshareofpatience,and Ithank them forthatas well.I'dalsoliketo thank Ed

Feigenbaum forconsistentlyshowinginterestinmy work throughout thisperiod,and

formaking the Ads_nced ArchitecturesProjecthappen.

Other lesscelebratedfiguresat Stanfordalsocontributedessentialhelp to my

work. Nakul Saraiyadeservessingularmention among these;he did the ma.iorityof

the development of the simulator,programming environment,and applicationpro-

gram thatwere centralto my experimentalwork. He alsoch_ffullyallowedme to

pesterhim constantlyforhelpand advicewhen Ihad technicaldl_culties.RichAcufF

performed lispmachine miracleson a routinebazis.Greg Byrd, SayuriNishimura,

Alan Noble,and James Rice alsowere most helpful.I'm most gratefulto allthese

peoplefortheirtechnicalhelp,aswellastheircamaraderie.Greg Byrd, my longterm

cubicle-mate,deservessp_;cialthanksinthe camaraderiedepartment.

Three years ago, I left Stanford with my thesis not quite done so that I could

teach at Gusta_ms Adolphus College. While three years may seem like a long time for

the transition from not quite done to done, I am acutely aware that that trmmition

would never have occurred at all had it not been for th_ absolutely incredible amount

of support I've received from my colleagues at Gustavus, particularly Karl Knight

and Barbara Kaiser. They have been by turns sympathetic, protective, enco_aging,

and dictatorial, as necessary to get me oil my dutf. Karl has patiently read drafts of

most of the chapters, talked with me extensively about them, and given extremely

useful suggestions for improvements. I won't _D" to enumerate my entire 13-member

department, but others have been quite encouraging as well. Thanks very much to

all my friends here at Gustavus.

Last but not least, thanks to my wife Stefanie and my parents, who told me that

the}, "knew" I'd finish one day, even when I didn't know that, and then proceeded

to tellme itwould be o.k.with them ifI didn't.My son Karl,who doesn'tknov:

that he'sbeen helpingme through a thesis(becausehe doesn'tknow what one is)

has none the lessdone so,by brighteningup even my grimmest days.

This materialisbased upon work supported under a NationalScienceFounda-

tionGraduate Fellowship.Any opinions,findings,conclusionsor recommendations

expre_ed inthispublicationarethoseofthe authorand do not necessarilyreflectthe

viewsofthe NationalScienceFoundation.This work was alsosupportedby DARPA

ContractsF30_02-85-C-0012and MDAg03-83-C-0335, NASA Ames Co'ntrac_NCC

2-220-$1, Boeing Contract W26687_, and Digital Equipment Corporation.

vi

Contents

Abstract iv

Acknowledgements

1 Introduction I

1.1 Challenge 2

1.2 Opportunity 6

1.3 Contributions 7

1.4 Out]ine of the dissertation 8

2 Application and Axchitectural Context 10

2.1 The ELINT surveillance application 10

2.2 The AIKI'RAC surveillance application 12

2.3 The LAMINA object-oriented system 15

2.4 The CARE multicomputer 16

2.5 Context summary 18

3 Related Work

3.1 A taxonomy of load distribution problems

3.2

19

19

3.1.1 Mapping 21

3.1.2 Siting 23

Similarities to prior work 34

3.2.1 Real.time systems load dietribution 34

3.2.2 Uncertainty and delays 35

vii

4

3.3

3.2.3 Information dissemination 43

3.2.4 Migration and communications redirection 44

Summary of related work 46

Modeling and Algorithms

4.1 Load metric

4.2

4.3

4.4

4.5

4.6

a.7

48

49

Distributed averaging 50

ARIMA load modeling and forecasting 60

Tim,-series forecasting from average estimates 63

4.4.1 Bayesian inference 64

4.4.2 Estimating from uncertain history 66

Partner seeking 71

_That to migrate 71

Summary of modeling and algorithmic contributions 73

5 Implementation Issues 74

5.1 Timer-driven activity 75

5.2 Summary ofmeasage types 77

5.3 Load-information processing 78

5_4 Relief-request processing 81

5,5 Work-request processing......................... 82

5.6 Work-migration processing........................ 83

5.7 Communication redirection...................... 83

5.8 Summary ofimplementationis_,_,,s................... 85

Performance Results 86

6.1 Alterna_iveload-balancingpoliciesusedforcomparison 87

6.2 Applicationlatencies........................... 89

6.2.1 Increasedmigrationcost ,o3

6.2.2 Statisticalsignificance...................... 95

6.2,3 Increasedsystem loading..................... 98

6.3 Load estimationerrors 98

viii

Migration frequency 101

Load balance 104

Overhead 104

The relationshipbetween migrationsand latencies........... 107

Migrationdelay 109

Negotiationdelays 112

Syntheticloadexperiments........................ 112

Summary of performance resul_s..................... 120

7 Conclusions and Open Questions 122

7.1 The problem 122

7.2 The solution................................ 123

7.3 Outcome and open questions....................... 124

BibUography 127

ix

U------

List of Figures

2.1 ELINT organization 13

2.2 A loa_l example from AIRTRAC 14

3.1 Load di_ribution taxonomy 20

4.1 Averaging time vs. m (cost c< rn + 1) 54

4.2 A_raging time vs. ra (cost c_ m) 56

4.3 Averaging time vs. m (0 < _ < 1) 57

4.4 Averaging time vs. ra (1 _<_ $ 2) 58

5.i Load balancing messages 79

6.i

6,2

6.3

6.4

6.5

6.6

3.7

6.8

6.9

6.10

6.11

6.12

6.13

Input data 90

Comparison of load balancing schemes 92

The effect of increasing the process state size 94

Folded latency difference histogram 95

The effect of increasing the system loading 99

High-load latency differences 100

Migration frequency 103

Load balance achieved 105

Migration delay with small process states 110

Mi_ation delay with larger process states 111

Negotiation and migration delay with small process ,states 113

Negotiation and migration delay with larger process states 114

Synthetic los_l trigger probabilities 117

|JIII

6.14 Synthetic load, 200 word object size 119

6.15 Synthetic load, 500 word object size 120

xi

I

Chapter 1

Introduction

As the peak performanceof computer systemshas increased,one increasinglycom-

mon researchtheme has become the di_cultyof actuallyapproximating thatpeak

performancein practice.In particular,althoughconcurrentcomputation can raise

the peak performanceof a system in proportionto the number of processingele-

ments,carefulloaddistributionisnecessaryto preventimbalancesfrom detracting

substantiallyfrom.the peak performance.

Although thistheme isquitegeneral,tilespecificchallelJgesvary with hardware

and softwarearchitectureand withapplicationdomain. Lessobviously,theopportuni-

tiesforsolutionsvarywith architectureand applicationaswcll.Thisthesisaddresses

a specLflccombinationofarchitecturaland applicationtypesthatprovidesa particu-

larlyinterestingmix ofchallengesand opportunities.Ratherthan attemptingto find

s general"silverbullet"forallloaddistributionproblems,we willexamine carefully

how to fullyexploitthe particularopportunitiesaffordedby our chosendomain soas

to meet itsspecificchallenges.

Concretely,thisthesisexamines a classofsoft-real.timesurveillanceapplications

implemented in an object-orientedstyleon an ensemble multicomputer. We ahow

thatthisdomain presentsthe loaddistributionchallengeof performingglobalload

balancingwithout rapid 8;lobalinformationdissemination.However, we alsoshow

that thisdomain can providea unique opportunity,namely statisticallyperiodic

loading,and show how thatopportunitycan be exploitedinorderto meet the global

CHAPTER I. I._TRODUCTION 2

load balancing challenge. The following sections of this introduction outline in more

detail the challenge, the opportunity, and the contributions of the thesis, concluding

with a brief roa_ map of the remainder of the dissertation.

1.1 Challenge

This section explains why the characteristics of the chosen application domain and

architecture call for an exceptionally challenging species of load distribution mecha-

• runtime load distribution rather than compile-time mapping,

• dynamic object migrazion rather then static object placement.

• load balencing rather than load sharing, and

• global load balancing rather than local load balancing.

The applications motivating this research are object-oriented, with objects dy-

namically created and destroyed as the program runs in ,*esponse to unpredictable

external evente. Therefore, it is not possible to map the computation onto the archi-

tecture at compile time, as with more regular compuzations, Instead, a run-time load

distributionmechauism isnecessary.

Moreover,not only the populationof objectsbut alsothe patternof activityis

dynamic. Therefore,stat_ loaddistributionschemes which controlonly the initial

placementofcomputationalobjectsseem inappropriate.Instead,thisthesisfocuses

on @namic loaddistribution,inwhich existingobjectscan be migratedto new pro-

ceasingelements.(A pr_essin9 elementor #fieisa unitconsistingof one or more

processors,memory directlyaccessibleto thoseprocessors,and network interfacing

and routinghardware. An e_emble machine isa collectionofproceesiP.'_elements

which can communicate via an interconnectionnetwork.)

Dynamic load-distributionsystems can be dividedintotwo categoriesaccording

totheirfundamentalgoal:loada/Jarin9systemsattempt onlytopreventunnecessa_'

idleness,while loadbalencinqsystemsattempt to ensurethateach sitehas an equal

- • __ __ • iml iN I I

CHAPTER I. IA'TRODUCTION 3

load. Krueger and Livny now in [40] that los4 sharing sufRces t, minimize the

average waiting time of computations and maximize the throughput of the system,

but load balancing may be more appropriate where "fairness" is also an issue. The

soft.real-time systems considered in this dissertation are a perfect example of such

a situation. What soft _o/time means is that although there aren't hard response

deadlines which the s)_tem aSeolutely must meet, the system% performance is judged

by"itsabilityto respond to inputswith co.s_._te.tJylow latency.For example, the

system may be updating aircraftpositions,headings,and activitydescriptionson a

situationboard viewed by humans, basingthe displayon receivedsignals.Although

thereisno absolutemax hrtum delaybetween the receptionof each signaland the

correspondingupdatingofthe board,the usefulnessofthe board willdegrade rapidly

iftheviewerscan'tcount on the entiredisplaytobe approximatelyup to date.This

emphasis on consistentlylow latencyratherthan merelyhighthroughput makes load

balancingmore appropriatezh_ loadsharing,

Load balancingcan offeran additionatbenefitgivenour assumptionsregatzling

object-orientedsystems,We assume thatwhat ismigrated arethe objects,thatthe

tasksarisefrom the receptionof messages by'the objects,and that thesetasksare

executedby the processingelementon which the objectresides.Therefore,migrating

an objectnot only shiftsthe processingresponsibilhyforexistingtasks(i,e,messages

alreadyqueued for processingby the object)but it alsoshiftsthe sitest which

additionaltaskswillbe createdas furthermessagesare received.Ifan objectwhich

has recentlyreceivedmany menages ismore likelyto receiveadditionalmessages,

then migratingobjectsto balance the number of pending tasksmay alsotend to

balancethe arrivalratesforfuture_asks,

There aretwo generals_rategiesforloadbalanCing,known asglob0Jand Zocafload

balancing,Global load balmacingattempts to estimatethe instantaneousavP.rage

overallprocessingelementsof_;heirloa_Isand then move work from overloadedsites

to underioadedones so as to bring them to the system-wideaverage, Local load

balancing,on the otherhand,compares the lo_dswithineachofmany pairsofsites(or

o_hersmallgroulmofskes)withoutreferenceto any notionofa system.wideaverage

load,and moves work so _usto remove any loadimbalancev,_ithineach pair(orother

CHAPTER 1. L_TRODUCTION 4

small group). The work transfers may move work from one overloaded site to m_other

less overloaded site, or from an underloaded site to another more underloaded site,

both of which would be avoided by global load balancing. With sufficient repetitions,

local load balancing can achieve system-wide load balance, since the pairs or small

groups are typically chosen to overlap or are chosen on a dynamic, randomized basis.

The disadvantage, however, is that it may require more work migrations to do so. In

contrast, global load balancing would in principle migrate _my object at most once

and would never migrate an object from a site and then another object to that same

site; however, it requires global information, which may be expensive or impossible

to obtain in a timely fashion. The focus of this thesis is to overcome this difficulty.

Our notion of "global" vs. "local" load balancing is related to but distinct from the

notion of network locality. One obvious way to choose the pain of sites for a local load-

balancing system is to use neighboring sites in the interconnec_ion network. When

this is done (or other small network neighborhoods are used), the load balancing

is "local" in a stronger eense; this corresponds to what Halstead termed diffusior_

load balancing [31]. We will reserve the term "local load balancing" exclusively_as s

descriptor of the basic balancing objective. Even if work is migrated between distant

sites, the load balancing is "local" if the amoun_ of work migrated is chosen so as to

equalize the loads of the two sites in question.

For global load balancing, on the other hand, there is little realistic choice but to

allow non-neighboring sites as partners for load transfers. Major load imbalances can

exist without any pair of neighboring sites being on opposite sides of the system-wide

average load.

The relative merits of diffusion, more generv3 local load balancing strategies, end

global load balancing are intimately tied to both the hardware architecture end the

application domain.

Early erwemble architectures such as Halstesd's MuNet [31] provided only nearest-

neighbor communications; passing a message to a more distant _ite required full

proceBsor intervention at e_h intervening site to store and fo_ard the message.

Thus the cost of "directly" migrating an object to a distant site would not have been

much less than that of difl'_l_ing it one site at a time.

---- , | J _ n inn n I

CHAPTER 2. INTRODUCTIO.¥ 5

Incontrast,the targetarchitectureforthe work describedinthisthesissupports

cut-throughrouting,inwhich messagesstreamthroughinterveningsitesina pipelined

fashionwithoutprocessorintervention.In thiscase,the latencyofa message trans-

missionisproportionaltothesum ofmessagelengthand transmissiondistance,rather

than theirproduct,inthe absenceofcontention.Thus, strategiesinvolvingnon-local

work transfersare feasible,and in particularglobalload balancingcan be a serious

contender.

These architecturalconsiderationsareimportant enablingfactorsforglobalload

transfer and hence global load balancing, but they are not in and of themselves

motivation to use global load balancing. This is where consideration of the application

domain becomes relevant. Recall that the primary virtues of global loR..dbalancing _e

thatitcan preventrepeatedmigrationofthe same objectto successivelylessloaded

sitesand thatitcan preventunnecessarymigrationsofobjectsfrom underloadedsites

which willreceivereplacementobjects.For an applicationwhere throughput isthe

primm'yperformancemeas_e, theserepeatedand unnecessarymigrationscontribute

to overhead but do not more directlystand in the way of applicationperformance.

On theotherhand, inthe soft-reM.timeapplicationsthatarethe focusofthisthesis,

theperformanceobjectiveisconsistentlyshortlatenciesratherthan highthroughput;

excessivemigrationscan substantiallylengthenlatenciesand thusdetractfrom this

objective.

Thus, inordertoobtaincon_stentlyshort]atenciesina dynamic, object-oriented,

soft-real-timeapplicationrunning on a modern ensemMs architecturewith cut-

through routing,itappears desirableto do dynamic:globalload balancing. The

problem isthat although we can rapidlycommun.icatebetween distantsi_es,this

does not impiy that allsitescan rapidlyobtaininformationabout allother sites,

particularlyifthereare h_mdr_s or thousandsofthem. Therefore,itwillingeneral

be impos6ibleforallsitesto determinethe instantaneoussystem-wideaverageload

beforeitchsnges.This combinationofthe desirabilityofglobalload balancingwith

the difilcttltyofobtainingcurrentglobalload informationisthe essentialchallenge

f_ced by this thesis.

CHAPTEI';. I. INTRODUCTION 6

1.2 Opportunity

Having seen that the cllallenge is to produce accurate estimates of the current system-

wide loading without rapid global infurmation sharing, it is time to consider what

opportunities exist for escaping this dilemma. If information dissemination takes

time, "chertthe system-wide information actually available will reflect historical loads,

rather than current ones. Is tl_ of any use7 Yes, if there is some relationship bet_'een

past loads and present ones, such that knowledge of the past loads can contribute

to an estimate of the present load. To some extent this will be the case in any"

completer system--the load doesn't just randomly jump from one level to another

completely independent one at each instant--but we will see that it is especially true

in the soft-real-time surveillance systems under consideration, because their loads are

statistically periodic.

Programs in our chosen application .domain are driven by input from periodic

sampling or scanning of the real world, with sufficient continuity from period to period

to allow tracking of changes. Thus the input arrives periodically with adjacent periods

havin_ similar inputs. For example, the number of aircraft observed by a P_DAP_

system will not c_a_ge precipitously from one scan ¢o the next.

This periodicity of input can translate into a periodicity of loading of the computer

system, provided that two conditions are met. First of all, the proceasing mus_ be

largely determined by the input data. For example, if the majority of the load arises

from processing triggered when an aircraft newly deviates from its flight plan by more

than an allowed amount, then the continuity of inputs may provide little continuity of

processing load. The applications under consideration in this thesis do expend some

processing effort on suc_h computations, but largely perform more routine processing

which is _ consistent from period to period as the data,

The second condition necessatT for input periodicity to show through as load

periodicity is that the system must be sut_ciently powerful to keep up with the input,

rather than smoothing out the load by building up work backlogs during the peaks

for pr,_cessing during the valleys, For example, many traditional batch processing

systems have highly periodic loads but are intentionally sized for the average load

II Ill II

CHAPTER I. INTRODUCTION 7

rather than the peak load so as to efficiently spread the _oad out, since the primary.

goal is high utilization. In real-time computing, on the other hand, the focus is on

low latency rather than utilization, so systems are sized for peak loads. Therefore, in

our chosen application domain we can expect to see periodic loads.

Note that the periodicity under consideration is of a statistical nature, not a

rigid mathematical one. Adjacent periods are similar but not identical, and distant

peRods may bear no resemblance at all. None the less, the correlation between loads

from corresponding points in di_'erent periods adds to the correlation between loads at

consecutive instants to help make the historical load data more relevant to estimating

the current load. This relevance of historical data constitutes an opportunity; the

primary thrust of this thesis is the exploitation of that opportunity.

1.3 Contributions

The major contributionof thisthesisisa techniquewhereby explicitstochastic-

processmodels ofboth loadingand informationdisseminationguide the assimilation

ofhistoricalloadinformationintoimproved estimatesofinstantaneoussystem-wide

load. This is done by applying the statistical techniques of time-series analFsis and

Bayesian inference.The improved load estimatesenablesuccessfulglobalload bal-

ancingwhh itsattendantlow migrationrate.This techniqueisexamined not only

analyticallybut alsothroughempiricalsimulationstudieswith an experimentalirn.

plernenta_ion.

On the more theoreticalside.,thisdissertationpresentsmodelling,optimization,

and algorithmdesigncontributions.In particular,itanalyzesa randomized fully-

distributedalgorithmforload-metricaveragingand use_ that analysisto optimize

a freeparameter of the algorithm. This averagingalgorithmhas the Intcresting

property of producing repeatedestimatesof the averagewith a range of tradeoffs

between accuracy and delay. Next thisthesisshows how a simple model can be

effectiveat capturingthe statisticalstructureof the time evolutionof the load,in

particularitsperiodicity.These two models--one ofthe averaging,the otherofthe

loaditself--areintegratedtogetherto allowan optimalweightingto be inferredfor

CHAPTER I. I_fRODUCTION 8

the various ages and qualities of load information available. This method of load

estimation is combined with other elements to form a complete algorithm for global

load balancing. Finally, analysis yields approximations to the improvement this load

estimation technique can offer relative to the alternatives of using either only old but

complete load data or only recent but incomplete data.

Having presented this load-balancing algorithm (with attendant analysis), this

thesis then goes on to explain how it was actually implemented and to present exper-

imental resultsobtainedfrom simulationsusingthe implementation.The simulation

resultsshow not only overallperformanceimpact but alsothe more detailedeffects

underlyingthesystem performance.In particular,theload-estimationtechniquepro-

posed in thisthesisi_shown to indeedproduce improved loadestimates.Further:

itisconfirmedthattheseimproved loadestimatesallowloadbalancecomparable to

thatof othermethods to be achievedwith man), fewerobjectmigrations,and that

migrationsdo inducesignificantapplication-levellatency.When objectmigrationis

relativelycheap,theextraoverheadofthe proposed load-estimationzechniquecoun-

re;balancesthesefactorsand resultsin approximatelyequaloverallperformanceas

with simplerdynamic load balancingtechniques.However, the simulationresults

show thatwhen objectmigrationismore costly,therecan be a net performanceim-

provement from using the proposed technique.Finally,additionalsimulationdata

providessome insightintohow the proposed load-balancingmethod would farewhen

used with an applicationhaving a highb,regularstaticarrangement ofobjects,and

in particularhow variouscombinationsof objectplacement mappings and object

migrationtechniquesinteract.

1.4 OutUne of the dissertation

• Chapter two describes the architectural and application context of this research.

It describes the simulated multicomputer used, the object-oriented concurrent

programming language in which the applications were written, and the soft-

real-time surveillance applications themselves.

• Chapter threesurveysrelatedwork. Itciteswork upon which thisdissertationis

i • I H I

CHAPTER I. INTRODUCTION 9

based and also differentiates the approach presented here from other approaches.

Chapter four presents our stochastic-process models for the averaging process

and for the system loading, shows how those models can be combined, describes

our load-estimation and load-balancing algorithms, and presents related analy-

sis.

Chapter five outlines the experimental implementation of these algorithms. This

necessitates addressing various details omitt_ in the original algorithm descrip-

tion. This chapter aJso provides an accounting of the simulated time taken _,

various load e_imation and balancing actions, which is important background

for the empirical results.

Chapter six describesthe experimentsperformed and analyzesthe data oi>

rainedfrom them. This includesboth applicationperformanceand more de-

tailedperformance.relatedeffects.Although themajorityofthischapterfocuses

on experimentswi_h one ofthe targetedclassofsurveillanceapplications,the

chapterconcludeswith additionalexperimentsperformed usinga radicallydif-

ferent,highlyregular,s_a_icapplica'cion,inorderto delimitthe applicabilityof

ouz methods.

Chapter seven concludesby summarizing the resultsand contributionsofthis

dissertationand by enumeratingopen questionsremainingforfutureinvestiga-

tion.

Chapter 2

Application and Architectural

Context

As stated in the introduction, this thesis focuses on the special combination of chal-

lenges and opportunities provided by a particular c]a_ of applications running on a

particular class of architectures. This chapter describes the application and archi-

tectural context of the dissertation more precisely by presenting the specific software

and hardware systems which motivated this work and which provided the experimen-

tal setting. In particular, the following sections describe the ELINT and AIRTRAC

surveillance applications, the LA_HNA concurrent object.oriented language, and the

CARE 6imulated ensemble multicomputer. ALl of these systems were developed in

the sam_. research group as this dissertation research was conducted in, the Advanced

Architectures Project [53] of tile Stanford Knowledge System Laboratory..

2.1 The ELINT surveillance application

Two applications written in LAMINA and running on CARE formed the primary

motivation for the work reported in this thesis:]gLINT and AIRTRAC. Of these,

ELINT was the older and hence more stable program, and thus was used for the ma-

jority of experimentation. This section describes ELINT, while the following section

outlines AIRTRAC.

I0

CHAPTER 2. APPLICATION AND ARCHITECTURAL CONTEXT 11

The ELINT (Electronics INTelligence) system was originally designed as one

component of the TRICERO multi-sensor information fusion system [62], a sequential

uniprocessor program. It was later redesigned to use concurrent replicated pipelines

of objects [12], and then yet Is_er a LAMINA version was written, using a similar

design [54]. The experiments described in this thesis were based on ths_ LAMINA

version, with a few bug fixes and further r_.inor improvements.

ELL_T receives pre-processed reports of passively-acquired emissions from

B.ADAR systems and re_hes conclusions about the tracks, quantity, nature and

activities of the aircraft whose emissions are observed. The system's activity is data-

driven, with the input supplied periodically by two or more potentially mobile ob-

servation stations. Because ELINT is intended to drive a situs'clod-board for human

assessment, there are no hard constraints on its latencies_ but they should only in-

frequently be].onger than normal, and then not by much. lest the situation board

becomes unreliable.

The input to ELINT consists of a time-ordered stream of observation records,

where each observation contaias the following infom_ation:

• the time at which the observation was made, quantized to an integer input

period,

• the observing station making the observation and its current location,

• an integer track number for the observation; the pre-processing equipment at-

tempts to assign a single track number to all observations of a single emission

based on signs] characteristics and. continuity, but may not always succeed,

• the direction in whic_ the emitter lies, relative to the location of the observing

station,

e the type of emitter (e.g. missile guidance, navigation, or identif7 friend or foe),

based on the characteristics cf the signal, including when known the ._cciflc

equipment,

• the mode of operation of the emitter (e.g. searching or locked-old) for those with

multiple mode, and

CHAPTER 2. APPLICATION AND ARCHITECTURAL CONTEXT 12

• a general indication of signal quality,

Based on these observations, ELINT computes the fix (position) and heading of

emitters, associates into a cluster any emitters which remain _gether, makes assess.

ments as to the nature of the aircrah in each cluster based on the emission types, and

identifies immediate threats (e.g. RADARs locked on targets). Reports ate generated

each input time period contdning the results of these computations; the intention is

that these reports would be used to update a situation board display.

The LAMINA implementation of this program uses objects to model the emitters

and clrsters of emitters.- Hence objects are crested sad destroyed at runtime in

response to the data, and thus in this context even "static" load balancin_ means

creation-time placement rather than compile-time partitioning. Another noteworthy

aspect of the LAMLNA implementation is that each real-world object is typicalIy

represented by several LAMINA objects. Pot example, each emitter is represented by

a four-deep pipeline of objects, each of a specialized class dedicated to one aspect of

the processing (observation processing, fix determination, heading computation, sad

clustering status control). Thus there is a greater opportunity for excessive object

migrations to lengthen individual output latencies than would be the case in the

absence of this pipelining. Figure 2.1 shows the overall organization of the LAMINA

implementation of ELINT.

To give some indication of granularity, most method invocations take 200--_00/as,

though a few are as brief as 40/_s or as long as 1.Tins. The object states and messages

are typically several tens of words in size.

2.2 The AIRTRAC surveillance application

Another soft-real-time surveillance application, AIRTRAC [45], was under develop-

ment concurrently with this research, and provided aciditiond evidence of the applica-

bility of the lo_l modelling process described in this thesis. However, because it was

in a state of flux and earlier versions were not kept current with changes in LAMINA

and CARE, it was not possible to use it in the actual load balancing experiments.

Therefore, it only merit_ brief comment here.

CHAPTER 2. APPLICATION AND ARCHITECTURAL CO_rTEXT 13

Repli_&[al Key:
i

Figure 2.1: ELINT organization. The labels in this diagram ate the names of gen-

eral ¢luses, but the _rrows actually show communications patterns between specific
iastaa_ces of those classes. The different box shapes indicate the number of instances

of each cla_. For example, there is one cluster manager, a fixed number of emitter

m&uagers, one emitter fix per real-world emitter, and severs] cluster marchers per
re_l-world cluster. This figure is adapted frorr_ [54], which also describes the function

of each class and the nature of the raessages they exchange.

I ..

CHAPTER 2, APPLICATION AND ARCHITECTURAL CONTEXT 14

24 -

15

12

9

31

-30o 31o 320 33o 34o 36o 370 4oo
time (ms)

Figure2.2:A loadexample from AIRTRAC. Note thatalthougheach periodresem-

blesneighboringperiods,the load pa_terngraduallyshJfss.

The AIRTRAC problem consistsof usingactiveRADAR _rackingand acoustic

sensorsto characterizeaircraftflightpaths,wRh the goM of identifyingflightsto or

from airfieldsused by smugglers.As in ELINT, the majorityofthe work occursina

data-drivenpipelinedfashion.The detailsareratherdifferent,however. For example,

the activeRADAR alreadyprovidespositionand heading (aswellas covarisncesof

them), and thereisno need to do clustering.However, insteadofspatiallyclustering

emitters,itisnecessaryto temporallyclusterobservltionsintoflightpath segments

of approximately constant velocity as the first step in characterizing the flight path.

Figure 2.2, which is reproduced from [30], shows a typical section of a load trace

observed in the earlier load-modeling experiments with AIRTRAC reported in that

paper. This figure illustrates the form of statistical load periodicity exploil;ed by this

the_is.

One interesting experience with AIRTRAC and load balancing is reported by

Nakano and Miriam| in [4,5]. They initially used a somewhat sophisticated sta'cic

load-balancingscheme tha_attemptedto spreadobjectsevenlywithinlimitedneigh-

borhoods of the creatingobject. The resultwas dismalperformance,which was

CHAPTER 2. APPLICATION AND ARCHITECTURAL CONTEXT 15

improved greatly by switching to random placement. This helps motivate the choice

of random placement as a baseline in the experiments reported in this thesis, How-

ever, Nakano and Minami go on to report that uniform random placement was further

improved upon by reserving sites for key static objects with heavy loads; this is indica-

tive of the sort of thing dynamic load balancing might do automatically, by migrating

other objects off of the sites holding those heavily used objects.

2.3 The LAMINA object-oriented system

The mtrveillance applications motivating this thesis were programmed for CARE using

the LAMINA language [21,].9]. LAMrNA is a concurrent object-oriented extension

to the LISP programming language. A LAMINA application consists of a collection

of independent, concurrently executing objects which are instantiations of general

object classes. The objects communicate by asynchronously transmitting messages,

which trigger execution at the receiving object. In this regard, LAMINA is descended

from Hewitt's Actor model [1].

LAMFNA isnot a purelyobject-orientedlanguage;in additionto objectsand

scalars such as numbers, there are structures such as pairs and arrays. (There are

also so-called streams, which will be described below.) The methods associated with

av, object, can mutate both that object's instance variables and also the structures

referredto via thoseinstancevariables.In particular,sincestructuresare mutable

(and can recursivelycontainstructures),they can form arbitra_ directedgraphs.

However, thesemutable structuresare localto individualobjects;when a structure

ispassed in a message, the graph rooted there iscopiedto form an isomorphic:

independentlymutable graph.

One unusual featureof LAMINA isthatthe "mailboxes"at which me_sages are

receivedare first-classentitiesindependentofobjects.These mailbox-likeentitiesare

termed sire,ares;they are the only sharedmutable entityin the LAMINA system,

and the only one passed by referenceratherthan by copying. Each objecthas a

primaD" task stream,and typicallyloopsrepeatedlyreadinga message from that

streamand invokingthe method specifiedinthe message. However, thereisnothing

CHAPTER 2. APPLICATIO_ AND ARCHITECTURAL CONTEXT 16

to prevent an object from reading from a different stream, which it may have created

for the purpose or may have received a reference to in a message. Similarly, although

qrpically only one object will read from a stream, this is not mandatory. '_trcams

(including objects' task streams) may be configured to print queued messages in

priority order r_ther than FIFO, using priority tags included in the messages. The

same priority tags can also be used as sequence numbers, in which case the object is

only invoked with the smallest-numbered memage it"its predecessor has already been

processed. Finally, streams can be set to forward their messages to other streams;

this capability is exploited by the object migration mechanism.

The only form of atomicity provided is that each method invocation is locally

atomic, in the. sense tha$ no other method on the same object will be concurrently

invoked. However, methods on other objects may execute concurrently. Further,

message sends are asynchronous, with the reply (if any) constituting a separate inde-

pendently atomic invocation.

The implementation of LAMINA cn CARE always stores the entire state for each

object, on a single site, executes all methods of that object on the same site, and

queues on that site unread messages of streams most recently read by that object.

2.4 The CARE multicomputer

The CARE multicomputer architecture [191 is a message-passing machine containing

on the order of 100-1000 processor-memory sires, each with an additional special

purpose processor for housekeepin 8 chores and a dedicated router to allow divot

cut-through communications.

The main processor at each site, called the evalua_o_, is a general purpose processor

which executes the application code. It is the ev_uators' loading which our loe_t-

balanc_n8 system attempts to improve.

The simulation does not contain a detailed model of the evaluators; insteac,, the

application code is run directly on the simulation host aud the resulting time scaled

|111

CHAPTER 2. APPLICATION AND ARCHITECTURAL CONTEXT 17

appropriately. Care was taken to make the timings as repeatable as possible by ac-

counting for paging and other low-level activities, in order that controlled experimen-

tation w'mld be possible. This proved inadequate, however, so for the experiments

reported in this thesis a different technique was used. The scaled timings were logged

in one preliminary run with each time labeled with the invoked method name and

object class. These times were then averaged for each method/clam pair. The ex-

perimental runs were rigged to pretend that each method invocation had taken th_

corresponding average time. This allowed controlled observation of the effect of load

balancing, but may have made the simulazion less realistic. However, no qualitatively

diEerent behavior was obsen,ed than when the actual scaled timings were used, and

the times logged in the preliminary, run did not show any major variation other than

by class and method. The loa_i balancing algorithm was designed on the realistic

assumption that execution times were not known in advance, even though in our ex-

periment the time taken by e. pending task could in fact have beer, deduced from the

message tag and the receiver's class.

The special purpose processor, called the operator, implements the load-balancing

algorithm as well _ providing message, encoding and decoding, message queuing,

and process scheduling. (Message encoding is the process of converting pointer-based

structures to a compact linear form; decoding is the reverse. Sections 2.3, 5.5, and

5.6 amplify on the need for encoding and decoding.) The operator has a tight shared-

memoD' coupling to the evaluator. One of its intended responsibilities, garbage col-

lection, was not implemented in the simulation. The simulation model of the operator

accounts for the time taken by each operation by totalling up times for component

actions; chapter 5 specifies the operator time_ for load-balancing actions.

The communications network is a high-performance cut-through network with a

bidirectional toroidal mesh interconnect and hardware support lot mui'cicast [13]. It

pipelines multi-hop transmissions, even in the multicmst case. The network is sinl-

ulated at the register-transfer level; the simulated times therefore correctly reflect

contention effects. Several fouling algorithms are available; in the experiments re-

ported in thk thesis, the routing algorithm chooses the route dynamically at each

site so as to avoid unavailable links, provided the message moves strictly towards its

CHAPTER 2. APPLICATION AND ARCHITECTURAL CONTEXT 18

target. If all communication links in the direction of the target site axe unavailable,

the message is delivered tc the local operator's queue and them later re-transmitted

by that operator.

From the above it is apparent that CARE is structurally similar to contemporary

ensemble machines, such ss the It, tel Paragon [65]. As in CARE, each node of the

Paragon contains a routcr, memory, and two processors--one for communications,

the other for computation. Further, the Paxagon's nodes are connected in a two-

dimensional mesh, just as in CARE. However, one difference between CARE and

contemporary ensemble machines merits note: CARE is several times slower, reflect-

ing the state of hardware technology at the time this re_axch was begun. Although

i_ is possible to smooth over these shifts of technology by citing times in clock cycles,

rather than nanoseconds, in this thesis we will use. actual times. There is little reason

to suppose that the speed not only of all the hardware sub-systems, but also of the

external data source, would scale at the same rate. The concluding chapter provides

some suggestions as to how the results of this the_is might be interpreted within the

context of more modern systems.

2.5 Context summary

The applications for which o_r load-balancing method is intended are driven b), pe-

riodic observations of an external situation that dynamically _aries. The programs

dynamically create software objects to correspond with observed entities in the exter-

nal world, such as emission sources; typically several software objects will be created

for each rea/-world entity. The objects %_ry in role within the data processing; for

example, there axe key "manager" objects. Outputs are produced as the result of

p!peline-llke flow of data through multiple objects; the latencies of these outputs

should be kept consistently small The state of each objec_ resides in the local mere-

or)' of a single processing element of th_ ensemble machine, sad all proc_sing for

that object occurs at the same site. The sitm are connected with a cut-through mesh

network that supports mu]ticasts. An extra processor is available at each site for such

ta_ks as message processing and load balancing.

-- II

Chapter 3

Related Vork

This chapter surveys prior work with two distinct goals: differentiating our load-

distribution problem from alternative problems, and exploring the similarities be-

tween our work and that of others.

FirsL we will elaborate on section 1.1 by more carefully positioning our particular

load-distribution problem within the full taxonomy of such problems. Since the goal

here is to position our thesis in this taxonomic tree, we will concentrate on stating

the essential distinctions between the various branches of that tree, rather than on

describing the work that has been done in the other branches.

Having differentiated our prc blem from other problems, we will examine prior

work more closely that is similar to ours in one way or another. What have others

done who were faced with real-time applications? What other work has a similar

emphasis on employing uncertain, out of date load information? What mechanisms

similar to ours have been employed for the underlying tasks of disseminating load

information e_d migrating communicating objects?

3.1 A taxonomy of load distribution problems

The general problem of how to divide a workload among multiple processors c(_mes

in.many variations, illustrated in figure 3.1 and described in this section. The highest

level die_tinction is between approaches such as ours that distribute the da_,, (whether

19

CHAPTER 3. RELATED WORK 20

pre-scheduling

load distribution

/ \
control scheduling data distribution

/\ /\
self-scheduling mappia8 siting (all can be

/ / pl_eme_t or migration)/ I \
static remapplng oblivious load load

d_aring belanci_$/t // /x
phase boundary sender receiver local global

¢lumse slfiftin8 initiated initlated_Thisthetis isrhere"_f"-_

Figure 3.1: Load distt-ibution taxonomy. This diagram shows the varieties of load

distribution problems, ill_tstrating the degree to which our problem of global toad
ha:lancing is related to each of them.

CHAPTER 3. RELATED WORI(21

at the level of entire process states, objects, or individual array elements), and those

which attempt to sched_e elements of the control flow (such as loop iterations),

leaving the questions of data location and access implicit. Control scheduling is

sufficiently remote from the approach taken in this thesis that we will only expand

upon the data distribution side of the taxonomy in the following subsections.

Within this data distribution side of the taxonomy there is another dichotom):

Some researchers have focused on the structure of the data, e.g. as a regular two-

dimensional array or a particular graph structure of interconnection among commu-

nicating processes. The problem is then conceived of as how to systematically map

this structure onto the physical structure of the hardware. Others treat each unit

of data independently, with the problem being to separately choose an appropriate

processing element for each. The work presented in this thesis falls into the latter

category, because the structure of communicating objects in our target applications

is dynamically generated and constantly changing. However, it is worth briefly men-

tioning some highlights of the alternative approach (mapping), for the sake of context.

3.1.1 Mapping

Within the general mapping approach, a primary distinction is between those variants

cha_ do the mapping once and for all in advance, and _hose that remap at run.time

to accommodate changes in the amount of computation being clone on various parts

of the static data structure, or to accommodate other changes, such as in the relative

proportions of computation and communication.

Static mapping

The primary virtue of static mapping is that resource scheduling is not competing

for the same computational resources as the application program. However, there

may be some sacrifice of performance, because the load distribution can't bc adapted

to changing conditions. In pa._ticular, if the locus of computational activity shifts

unpredictably, the mapping has to be designed to pc-form well regardless.

s- i il :____

CHAPTER 8. RELATED WORK 22

One typical example is a message-passing implementation of the Zipscreen battle-

field simulator done by Nicol [46, 48]. The _nulation takes place on s two-dimensional

hexagonal grid; units of two opposing forces move from hexagon to hexagon and en-

gage in combat when they arrive either on the same hexagon as a unit of the opposite

force or on a neighboring hexagon.

Because computation is concentrated in the area of active battles, which tend to

be geographically Iocslized_ there is a strong correlation bet_veen the loads associ-

ated with neighboring hexagons. Therefore, good load ba]auce can be achieved ur_ng

a wrapped (or modular) mapping, in which neighboring hexagons are assigned to

neighboring processing elements; that way each hexagon in any region smaller titan

the size d the enzemble is guaranteed to be on a distinct processing element. However,

since the simulation involves interactions of units in neighboring hexagons and move-

ment of units from hexagon to he-,_gon, this wrapped mapping produces considerable

network traffic. A block mapping, in which a single contiguous block of hexa_;ons is

assigned to each processing element, with neighboring blocks on neighboring sites,

minimizes this communic_tion._ tra_c, but at the cost of poor load balance (since an

entire battle may take place on a single processing element).

Nicol's solution is to strike a balance between the two; the domain is partitioned

into small contiguous blocks (many more tha_ there a_e processing e|ernents_, and

then the blocks are assigned to the processing elements in a wrapped fashion. That

way, if the blocks are sm_dler than the areas of intense acti_'ity (battles in this partic-

ular application), some load bsJance is stil_ achieved by spreading the activity across

multiple sit_.s, but a network message isn't necessary for each crowing of a hexagon

boundary. Nicol and Saltz [48] also app]ied this same approach to other problems with

shifting, localized workloads, such as a fluid dynamics code with adaptive gridding.

Note that although the_e problems have irregular workloads, there is an underlying

regular _tn|cture; _his distinguishes them from our target appli<_tions, where there

is no fixed structure to aggregate or map.

.... I _ Jill I I I

is i

CHAPTER 8. RELATED WORI_ 23

P mapp ns

Nicol and Reynolds [47] use the same two examples, Zipscreen and the adaptive

g. _dding fluid dynamics code, to illustrate one possible application of remapping. In

a typical Zipscreen simulation, there may be a phase where opposing forces move

towards one another, foll.'_wed by another phase where they actively do battle. The

first phase is communications intensive, and would benefit from a mapping with large

blocks, while the second phase is eomputationaIly intensive and would benefit from a

smaller block size. Similarly in the fluid dynamics code, there may be little adaptive

gridding until a shock wave forms, and hence it may not make sense to use a fine-

grained mapping until that point. Nicol sad Reynolds provide a heuristic for deciding

at what point to switch between the two mappings, based on unreliable evidence as

to whether the phase change has occurred. Their experimental results show that

the resulting performance is nearly as good as an optimal choke between the two

mappings at each time step.

The work of Cap and Strumpen [14] exemplifies an alternative remapping strat-

egy, designed to cope not with phase changes but with evolving imbalances in the

computational load on the various sites. This technique is to do an initial block

mapping (or the one-dimensional analogue, a strip mapping) and then periodically

shift the block boundaries so that heavily loaded sites loose some of the data do-

main to more lightly loaded neighbors. This is rather reminiscent of the diffusion

load balancing technique (defined in section 1.I), but continues to presume a definite

systematic mapping of a reg_ariy structured data domain onto the structure of the

ensemble machine. DifFusion, by contrast, fits into a different branch of our taxonomy

(shared by our own work), because it presupposes no structure on the collection of

independent objects and can wind up siting them in any arbitrary arrangement on

the processing elements.

3.1.2 Siting

At this point, we've examined alternative load distribution problems that differ from

ours at the most fundamental level,by distributingcontrolstructuresratherthan

CHAPTER 3. RELATED WORK 24

data structures, and at the second level, by systematically mapping a structured

data domain onto the hardware structure rather than independently siting individual

data units. This brings us _galn to the category containing our own work, namely

load-distribution problems concerning the siting of individual entities (typically either

objects or processes).

Alternative forms of _he siting problem can be differentiated in two orthogonal

ways. One, which is shown explicitly in our taxonomy diagram (figure 3.1, page 20),

consists of a closely related pair of issues: the load distribution objective and the

information used to achieve that objective. It is in this dimension that our o_'n

problem of global load balancing is differentiated from local load balancing, load

sharing, and completely oblivious siting. The other, orthogonal, distinction is that

siting can be done exclusively by placing newly created entities or can encompass

migration of existing entities as well. Thus our work, which focuses on migration, is

also distinct from all techniques confined to placement (though typically those are

also not global load balancing).

As explained in section 1.1, one fundamental difference in siting approaches is

between those such as ours that attempt to actually balance the load, and those that

merely attempt to prevent unnecessarily idle processors (load sharing). However, nei-

ther of these two categories adequately encompasses the very simplest siting policies,

in which entities are sited in a manner completely oblivious to loading, e.g. randomly.

Although such systems could perhaps be better labeled as load balancing than load

sharing, it seems better yet to put them in a class of their own, since oblivious policies

aren't closely "_iedto either objective.

Oblivious siting

Recent interest in oblivious siting schemes has focused on random placement; how-

ever, it is also possible to do the placement deterministically, or even to do ob|ivious

migrations. Wang and Morris [61] in their survey of early load siting Literature include

two references to work on cyclic placement, i.e., deterministic, oblivious placement.

Although this approach is usefuJ when a single source of work is doing the placement,

it is ill-suited _o systems such as ours in which the placement needs to be done on a

CHAPTER 3. RELATED WORI(25

decentr,dized basis. We are unaware of any studies of random ruination, presumably

because oblivious siting provides no reason to expect any randomly chosen migration

to be beneficial. However, in principle it would be possible to do random migrations

at some chosen rate; this ,_uld be somewhat analogous to stirring a pot to ensure

that it stays homogeneous.

Athas [5] advocated random pl_ement of fine-grained objects on ensemble ma-

chines, but provided only limited empirical evidence showing that it provided good

speedul_ for some simple benchmark programs when communication costs were ig-

nored, and that it produced predictably poor locality of communications. Grunwsld's

thesis [29], in contrast, provides s more thorough simulation study comparing random

placement with a wide variety of local and global load balancing placement schemes.

His simulation accounted for communication costs in a circuit-switched interconnec-

tion network as well as processor time. Grunw_ld's performance metric was the total

execution time for each of a range of benchmark programs, synthetic and otherwise.

He found that random placement was often the best performer or nearly so, never

a particularly poor performer, and frequently much better than many of the other

placement strategies.

Comparing thc_e eases where random placement worked well and thoee where it

didn't work as well, Grunwald concluded that it was "an acceptable scheduling strut-

egY if the e.verage process computation time is short, relative to communication delay.

For processes using more resources, status and load information is generally benefi-

cial." [29, p. 181] Grunwald's work was concerned with pzocess placement, rather

than object placement, but presumably similar results would carry over: for frequent

placement of short-lived objects, random placement may be adequate, while for the

less frequent placement of long-lived objects, more careful choices are necessary.

These considerations feed into our own work in two ways. On the one hand, Grun-

wald's relatively successful experience with random placement explains our choice of

i¢ as a baseline for comparison in our experiments and as the placement strategy with

which our own migration strategy will be coupled. On the other baud, his comments

regarding long-lived processes (or, we presume, objects) help motivate our decision

to add a more information-intensive migration policy.

CHAPTER 3. RELATED WORK 26

The objects in our target application are long lived, since some of them correspond

to the comparatively slow-moving entities that inhabit the non-computational world

and the others are permanent '_manager" objects. Thus it isn't surprising, in light

of Grunwald's results, that our experimental results in chapter 6 show that random

placement leaves ample room for improvement. We could have followed Grunwald's

lead and concluded that in the presence of such long-lived entities, we needed to

make more careful, informed placement choices. Instead, we've chosen the more

radical path of i,- plementin8 object migration, since our objects are both very long

lived and su_.je:t to dynamic changes in/heir activity level.

Load shaeing

Turning to load siting policies that make siting decisions based on a particular per-

formsnee goal, we encounter not only load balancing systems such as ours, but also

load sharing systems tha'c try t_ transfer work only to prevent unnecessary processor

idleness. The two assumption_ underlying load sharing are that the units of work

being allocated are independent tasks, and that the perforra_ce objective is to min-

imize the mean response time of the tasks. Papers on load sharing haven't always

made this clear; an influenfl_,i paper by Eager, Lazowska, and Z_or_an [25] declares

in the introduction that '_ve cor_sciously use the phrase 'load _h_ring' rather than

the more common 'load l_lan¢_ng' to highlight the fact that load balancing, with its

implications of attempting to equalize queue lengths system-wide, is not an appropri-

ate objective." [25, p. 54] Not an appropriate objective? Why not? Only four pages

later, in the fine.] section of the paper (where they present performance results) do

the authors bother to remark that "average task response time as a function of load

will be our measure of performance." [25, p. ,58]

Average response time will be minimized by any execution schedule that avoids

unnecessary idle,_ess; individual tasks can be treated arbitrarily unfairly without this

performance metric sneering, because these authors also assume that the tasks are in-

dependent. This is completely unlike the situation in our target applications. Firstly,

our ta_ke are coupled by the pipeline-like nature of_the processing; delays early in

a pipeline will delay all the later components of the pipeline. (The fact that our

__]i .J_____ JLJ ____ I JlD I I ____

CHAPTER 3. RELATED WORK 27

"pipelines" actually sometimes feed back into themselves, forming cycles, only makes

matters _vorse.) Secondly, we are in any case not satisfied with merely minimizing

mesa response time, since the nature of the application demands consistency of re-

sponse times. Similar points were made by Krueger and Livny [40], who compared

load balancing with load sharing. They concluded "chat the choice oi policy depends

On the users' performance goals as well as the workload characteristics. Load balanc-

ing, they reported, has the ability to improve a wider range of performance metrics,

including in particular those that attempt to measure fairness.

The primary distinction among load sharing approaches, shown in our taxonomic

tree, is between receiver-inltiated and sender-ini$iated schemes, In a receiver-initiated

scheme, a si_e that is idle or in danger of soon becoming idle seeks work from other

sites. In a sender-initiated scheme, heavily loaded sites seek lightly loaded sites to

which to transfer work. Eager, Lagowska, and Zahorjan [25] poi_';cout that the relative

efficiencyofthesetwo approachesistiedto the overallsystem loading;in a lightly

loadedsystem itiseasiertofindalightlyloadedsitetha_ a heavilyloadedone,while

in a heavilyloadedsystem thereverseistrue.For thosewho want topursuethe load

sharingapproach further,some otherinterestingpapers are [24,38, 17,63,57, 41].

In load sharing, as in many other areas of distributed systems research, attention

has lately turned to the additional complexitics introduced by heterogeneiW, see for

example [64].

All the load sharingwork describedabove was in the context of distributing

truerjobs on a localarea network ofworkstations.However, thereisone more un-

usualmember ofthe load sharingfamilythatwas proposed foruse in an earlyline-

grainedensemble-machineimplementationof a concurrentJunctionallanguage.Lin

and Keller[43]designedtheirgradientmodel foruse with a store-and-forwardgrid

interconnectionnetwork,so they restrictedthemselvesto localtransfersof informa.

tion and tasks between adjoining sites, as in diffusion load balancing. Within this

limitation, they implemented a receiver-initiated load sharing system.

Each site uses information from its neighbors to maintain an estimate of its dis-

tance from the nearest nearly idle site; this estimate is called the site's "proximity."

When a site'sload drops dangerouslylow, itsends out a requestfor work _o its

CHAPTER 3. RELATED WORK 28

neighbors in the form of a message that its proximity is now zero. Sites which are

themselves nearly idle ignore this information, since it doesn't affect their own prox-

imity of zero. Sites with abundant tasks respond to the work requests by periodically

transferring tasks to their lowest proximity neighbor. The remaining si_ effectively

pass on the work request to their neighbors; they do this by recomputing their own

proximity (as one more than the smallest of the neighbors' proximities) and notifying

their neighbors if this is a change.

Kal_ sad Shu [37, 55] used simulation to compare the gradient method with their

own local local balancing method (described below) using benchmark applications

and architectural amumptions which were both quite similar to Lin and Keller's own.

They found that the gradient method r,as insuf_ciently "agile" at spreading the load,

resulting in poc_ performance. Prom our vantage point, this result is predictable,

since they were comparing a load sharing algorithm with a load balancing algorithm.

What isremarkableisthat Lin and Kelleradvanced a loadsharingalgorithmat all

forsuch an interdependentcollectionoftasksms the varioussub-goalsofevaluating

a functionalprogram.

Load balancing

The onlyremainingclassesofloaddistributionapproachesidentifiedinour taxonomy

arelocalload balancingand globalloadbalancing.As describedin section1.1,local

load balancingisattractivebecause R doesnot requireglobalload informationand

because itiswellsuitedto situationsinwhich loadtransfersarerestrictedto being

between neighbors.This restrictionto neighbors(what we broadly term the diffu.

sio_styleofload balancing)isparticularlyattractiveinstore-and-forwardnetworlm;

however,even incut-throughnetworks,therewillbe some performancebenefitfrom

retaininglocalityofcommunication.

Local bad balancing Halsteadand Ward [31]describean earlyimplementationof

a diiftmionmigrationmethod, inthe contextoftheirMuNet store-and-forwardensem-

ble machine. As implemented,an arbitrarilychosenobjectismigrated between two

neighboring sites whenever one is more loaded_than the other. However. Halstead and

m

CHAPTER 3. RELATED WORK 29

Ward suggest as an unimplement_ improvement that an attractive force for locality

be added to the repulsive force for load balance. They speculate that this will improve

performance, but provide neither empirical evidence nor any mention of the possible

effects on system dynamics. They suggest the metaphor of mutually repulsive bodies

connected b_' springs; to our mind, this immediately brings up images of wavefront

propagation, perpetual oscillation, and chaos. Halstead and Ward seem immune to

th_e fears. They do, however, admit that it is an open question "whether reasonable

scheduling strategies can be built around the philosophy of decision-making on the

basis of local information only, or whether more global information and interaction is

required. _ [31, p. 144]

Hudak and Goldberg [34] experimented _dth such a more sophisticated attrac-

tion/repuision diffusion strategy in the context of combinator reduction. Their al-

gorithm di&,'t do any migrations, but instead only determined whether to place a

newly created combinator graph node on the creating site or on one of its neighbors.

As such,the onlyactuallongdistance"diffusion"that occursisin the sensethata

causalchainofnode crestionsmay progressivelymove acrossthe tonm networkone

site at a time.

Hudak and Goldberg'sscheme placesthe new node on the candidatesitewith

the smallestvalue of-_costmetric,calculatedas the sum of the site'sload plus a

weightingfactort;mesthe sum ofthe distancesfrom thatsiteto the sitescontaining

the nodes adjacenttothe new node in t,lecombinazorgraph.

Hudak and Goldber8 don'tpresentany resultsconcerningthe system dynamics

obtained with vat'iousvaluesforthe weightingfactor,but ratheronly the resulting

overallspeedup s.chievedwith weightingfactorsof 0, .2,.4,.6,.8,and 1.0. They

focussedon the factthatthe highestspeedup achieved(when the weightingfactor

was .6)was only a few percenthigherthan with a weightingfactorof 0 (i.e.,pure

di_sion). In doing so,they overlookedthe farmore interestingfactthatwhen the

weightingfactorwas I,the sp_dup was 25_ lowerthan the nearlyconstantlevelit

had forweightingfactorsof0 through .8.What isitthathappens when the weight

givento a taskworth of loadisexactlyequalto the weightgivento a hop worth of

distance?There istoo littleevidesceinHudak and Goldberg'spaper to tell,but it

• o
- ,i, niii •

CHAPTER 3, RELATED WORK 30

seems likely that some qualitatively different dynamic behavior occurs in this case.

More recently, Uehara and Tokoro [59] proposed a similar attraction/repulslon

diffusion scheme for object migration; in their system, the attraction is computed by

averaging a collection of vectors, one for each of the N most recently received messages

for some constant N. These vectors point in the direction of the messages' senders

and have as their magnitude the time the messages spent in transit. Although Uehara

aad Tokoro pay nearly as little attention to dynamics as Hudak and Goldberg did,

they do remark briefly that they have observed in their simu]ation that "the _'stem

may become instable because of thrashing." [59, p. 112]

Kal4 [37, 55] attempted to overcome two problems he perceived in the diffusion

approach. One is that there is no limit to the distance a task can move; in fact,

in the presence of a shifting load distribution, a task could be passed around for

ever. The other problem is that a prospective task exporter may be dissuaded by. the

comparatively high loads of its immediate neighbors, even if there are any number

of desperately underloaded sites just a little further off. To address these problems,

Kal4's contracting within a neighborhood (CWN) method stipulates a minimum and

maximum number of timm each task can be transferred. Until the minimum number

of transfers has been reached, the task is passed to the least loaded neighbor, even

if that neighbor is more loaded than the current s_te. Once the minimum number of

transfers has been done, additional transfers up to the maximum can continue pro-

vided the task now moves only to progressively less loaded sites. Kal_ proposed using

this technique for the initial placement of tasks, rather than subsequent migration.

Returning to the question of dynamics, it is worth noting that the information

on the load of neighboring sites may be out of date; Kal6 [37, p. 9] tells us that

"this information is maintained by broadcasting a very shortmessage to all neigh-

bors periodically, or as an optimization, piggy-backing the load information 'word'

with regular messages." Shu and Kal_ [55] show that w_th a long interval bet_,een

transmissions of load information the system can behave unstably.

Another general approach to local load balancing, suggested by Ferguson, Yemini,

and Nikolaou [27, 26], is to _reat it as an economic problem, in which resource allo-

cation is done by independent actors each attempting to maximize their own utility.

il I I I lill I II I

CHAPTER 3. RELATED WORK 31

Procemom hold auctions, in which processes compete for communications and com-

putation resources. This sets a "going rate _ for each resource, which will be higher

in heavily loaded regions. A process can decide whether it is cheaper to stay on an

expensive (i.e., heavily loaded) site or to pay the communications cost to migrate

and in return obtain cheaper processing elsewhere. Waldspurger, Hogg, Huberman,

Kephart, and Swroetta [60] describe experiments with a task placement system celled

Spawn based on this premise. Spasm is designed to place coarse-grained processes in

a distributed network of workstations. Its designers only tested it using independent

tasks on very small networks; under those limited circumstances it performed well.

Global load balancing We've already identified in section 1.1 some of the reasons

to consider global load balancing as an alternative to local load balancing. Addi-

tionally, Grunwald [29, pp. 145-.148] shows that if an application has a workload that

rapidly creates a large number of processes, local schemes will be unable to keep pace.

In particular, his workload of this form achieved speedups in the neighborhood of 70

on 25S si_:es with global load balancing schemes (even global random placement), but

only a_uud 40 with even the best local load balancing scheme (a variant of CWN).

The simplest way in which global load balancing can be applied is in small, tightly

coupled machines, such ss small shared-memory m_ltiprocessors. Majumdar and

Green [44] did this in a real-time Ballistic Missile Defense (BMD) application. How-

ever, there is so little problem obtaining up-to-date system-wide information in this

context that the issues considered in this thes_s are moot.

Another class of architectl_res for which global load balancing has been proposed,

precisely because global information dissemilmtion is easy, is broadcast-bus based

local area networks (LAYs) of workstation computers. Although LAN topologies

have late]), been becoming incree_ingly complex, at one time it was typical to have

many computers connected to a single Ethemet coaxial cable; in that context, global

information dissemination and _;lobal balancing seemed promising.

One elegant solution proposed by Kmeger and Finkel [39] integrates the estimation

of the system-wide average load with the p_ocess whereby an overloaded site locates

an underloaded site to which load can be transferred. This property is shared by cur

CHAPTER 8. RELATED WORE 32

global load balancing method ss well; however, Krueger and Finkel's scheme makes

essential use of the broadcast nature of the network, while our scheme is tuned to

networks supporting efficient multicast but not broadcast.

In Krueger and Finkel's scheme, a site with above-average load (relative to the

current estimate) broadcasts this fact. If an underloaded site responds in a reasonable

time, a work transfer is arranged. Otherwise, the estimated average load must have

been too low, since there was a site above it but none below it. Therefore the site that

had believed J.tself to be overloaded broadcasts a new, higher estimate of the average

load. Conversely, ff a site believes itself to be under]oaded but hears no broadcasts

from overloaded sites, it will broadcast a new, lower estimate of the average.

As in our implementation, Krueger and Finkel include an acceptable range wound

the estimated average to prevent thrashing; only sites that differ from the estimated

average by more than a threshold amount take part in the process described above.

Krueger and Finkel show by simulation that their scheme improves fairness as well

as overall performance, a_ would be expected from a global load balancing system.

An alternative global load balancing system for similar LAN" settings has been

proposed by Baumgartner, Wah, and Jua_g [9, 35]. Their system takes even more

detailed advantage of the nature of LANs such as coaxial-cable Ethernet; in particular,

these networks not only are physically a broadcast medium, but moreover they resolve

contention for this shared communication channel by collision detection. That is, it

is possible (in fact necessary) to determine whether other sites are attempting to

transmit simultaneously.

Baumgartner, Wah, end Juang ,ote that only a single task can be transferred

at a time on each such "contention bus" (in [35] Juang and Wah consider the case

that several parallel busses each connect all the sites). Therefore, there is the special

challenge for global load balancing to not merely transfer between overloaded and

underloaded sites, but in fact at each moment transfer from the most loaded ._ite to

the least loaded site (or from the most loaded n to the least loaded n where there are

n busses).

In the spirit of our own thesis, Baumgartner, Wah, and Juang tackle this special

challenge by exploiting a special opportunity prese, n_d _ contention busses; the___

-- I II I mm I i I ____

CHAPTER 3. RELATED WORE 33

provide protocols rluLt use collision detection to e_iciently locate the most and least

loaded sites. Inspiring though this approach is, it does not solve the problem to

which this thesis is addressed. _,Veface our own, difl'erent combination of challenges

and opportunities, and will need quite different techniques as a result.

'Fuming to networks such as CARE's, the only prior mentions of global load

balancing we are aware of other than Grunwald's are arguments as to why it is

impractical in this context. Athas writes in his thesis [5, p. 74]:

Unfortunately, for ensemble machines at least, data about the state of the

computation is lo¢_alized to each node and pos6ibly the set of neighboring

nodes. Each node mum make decisions about placing objects based on

limited and perhaps stale information about the state of the other nodes

in the ensemble Obtaining accurate global information about the

state of the computation is not practical.

Gmnwald implemented global load balancing using; simulated broadcast in binary

hypercube ensembles of size up to 256 sites. His experimental results generally seem

zo confirm Athas's pessimistic assessment, in that only rarely was the performance

si_.fllcantly better than with random placement (and often much worse). However, it

is important to note that he used brute-force information di_weminazion, rather than

the more sophisticated load estimation techniques proposed in this thesis, and used

only in/tial placement, rather than migration as in this thesis.

This is the gap in the taxonomic tree where we endeavor with this thesis to

send forth a new shoot: we will attempt, for the first time, to develop sophisticated

techniques l'or estimating _]obal loads (rather than merely communicating them) so as

permit sucee_ful globs| load balancing in a large-scale ensemble machine connected

by a]ow_legree network (i.e., one in which each site is directly connected to only a

few othe1_).

| |

CHAPTER 3. RELATED WORK 34

3.2 Similarities to prior work

3.2.1 Real-time systems load distribution

Most prior work which shares with us the real-time application domain has been

quite dissimilar in other regards. For example, we cited above a real-time BMD ap-

plication [44] that did global load balancing, but was quite different than our work

because it presumed a tightly-coupled shared-memory multiprocessor. Similarly, an-

other BMD-related project [32], the Radar System Test Driver of Huang, Shih, and

Machleit, resolved the load distribution problems primarily through static database

partitioning, which is inappropriate for our target applications.

Kurose and Chipalkatti [42] performed analytical modeling analogous to the

above-cited load sharing study by Eager, Lazowska, and Z_orjan [24], except that

a real-time performance metric (percentage of jobs missing their deadline) was used.

As with the earlier study of load sharing, an assumption was made that the tasks

being distributedare completelyindependent. Thus, even though good miss rates

were shown to be achievablewith simpleload sharingalgorithms,thereislittlerel-

evance to our domain of tightlyinterdependentcommunicating objects. Rarnam-

ritham,Stankovic,and Zhao [50]make a similarassumption of taskindependence;

thus,theirsimulationwork suffersfrom the same limitedrelevanceto our own appli-

cationdomain.

One particularlyinterestingreal-timeloaddistributionstudyisChang's thesis[15],

which isin the comparativelysimilarcontextof processmigrationon a LAN. Most

of that study focusseson independenttasks,but a pox_ionassumes that the tasks

form pipelinestructures.However, thatportionofthe thesisisIL,nitedto placement

ratherthan migration,to prioritymaintenanceratherthan deadlineobservance,and

to the caseofonly two prioritylevels.

Chang's thmis focusseson the problem ofchoosingwhich tasksto migrate_thus,

itisbest seenas complementary to our own work, which largelyneglectsthistopic.

Chang's contributlonto the Zaskselectionproblem conslstsoftwo heuristics,which

he terms triageand globalpriority.The forner isln_endedto reduce the fraction

of tasks that miss their deadlines, while the latter is intended to assure preferential

I i L __

CHAPTER 3. RELATED WORK _5

assignment of processing resources to high-priority tasks.

In the triage approach, tasks _re moved if they both can't meet their deadline if left

on their current site and can meet their deadline if migrated. Chang couples this with

load sharing, either sender.initiated or receiver initiated. Sender-initiated load sharing

provides lower miss rates and lower average lateness at low to moderate utilization,

but deteriorates rapidly at high utilizations, particularly if the communications is

slow.

Under the global priority system, an attempt is made to migrate tasks so as

to service the hi.eat priority ones first on a system-wide basis. This is done by

combining receiver-initiated and sender-initiated polling. When a site receives a task

that it will not process imediately, clue to the presence of higher priority ready tasks,

it polls a limited number of randomly chosen sites to see if any of them would give

immediate service to the low-priority task; if so, the task is transfered. Conversely,

when a site is about to begin servicing a low priority task (because it has no ready

high priority tasks), it polls a limited number of randomly chosen sites to see if any

of them have a waiting high priority task; if so, such as task is transferred.

Either of these selection heuristics could be combined with our global load bal-

ancing scheme, at the point where our scheme is trying to decide which objects to

migrate between a particular pair of sites to transfer a particular amount of load. For

example, objects could be migrated that have me_ages waiting that are of higher

priority than those on the recipient site_ where possible.

3.2.2 Uncertainty and delays

Other authorB have also recognized the need of load-distribution systems to employ

uncertain, incomplete, and outdated information, and have _uggested using Bayesian

techniques and/or exploiting histc3rical load data to cope with these conditions, In

this section, we will review three of these previous works that are somewhat similar

to our own in their focus on such techniques.

CHAPTER 3. RELATED WORK 36

Stankovic: Bayesian decision theory

Stankovic [_6] provided s general methodology for applying Bayesian decision theory

to distributed control probl _s involving inform_,tion (such as site loads) that is only

available in up to date forn, locally on each site, but which must be used in decision

making on other sites. He presented this methodology in the context of an application

to a psrticularly simple local load balancing problem, but since the methodology itself

is considerably more interesting than the particular application, it merits more general

description.

Bayesian decision theory provides a criterion for choosing an optimal action given

the following data:

i. the a _'_or/probabilitythatthesystem isineachofan enumerated listofstates

2. the conditionalprobability,given eachof thosestates,ofmaking es:.,hof a list

ofpossibleobservations

3. the actualobserv_ion which has been made

4. the utility(i.e.,desirability)of each actionwhen the system isineach state

In Stankovic'stechnique,each stateissome conjunctionof informationlocalto

the varioussizes.Forexample,inan applicationtodiffusionloadbalancing,one state

might be the neighbortothe North istheleast,loadedneighborand atleastfourtasks

lessloadedthan the decision-makingsite.Sa)-ingthatthe system isinthisstateisa

statementabout the actualinst_taneous conditionson allthe relevantsites;hence

thedecisionmaker isneverina positionto know whether thesystem isina particular

stateat the moment or not. However, givensuitablysynchronizedclocks,itisquite

possibleto findwhat statethe systemwas in atsome pasttime.

Although the sitesdon'tknow eachother'scurrentinformation(load),theyhave

informationon what itwas when lastcommunion,ted.Stankovicsuggestsaggregating

this outdated infon_ation into observations in the same way current information

is partitioned into states. For example, in the diffusion system there would be an

observationthfLtmeant thatthemost recentloadreceivedfrom the northernneighor

CHAPTER 3. RELATED WORK 37

is lower than the most recent loads received from the other neighbors and also at least

four tasks less _han the local load.

Recall that the actual system state is available, just not until a later time. There-

fore, it is po.mible to occasionally calculate the relative fr_uency of the various states,

and use this as an estimate of their probabilities in all Bayesian decision making until

the next time these frequencies are recalculated. Similarly, it is possible to occasion-

al]y calculate the frequency with which each observation was made in each state, and

take this as an estimate of the conditional probabilities. Stankovic assumes that the

utilities of each action in each state are provided by the sytem designer. Given these

three ingredients (the estimates of the state probabilities and observation conditional

probabilities and the utilitiy function), it is possible at these infrequent moments to

calculate a table mapping each observation into the optimal action to take. Then,

until the next time that the frequencies are recalculated and the table updated, all

that is required is to look up the current observation in the table in order to find out

what to do.

This approach is admirable in many regards, but it also suffers from some serious

shortcomings. Perhaps the most serious is that in say application where the stares

summarize information about the entire ensemble, the approach does not scale welt

to large numbers of sit_. Thus, it does not appear directly applicable to our problem

of global load balancing.

Another important respect in which Sta_kovic's scheme is weaker than ours is that

it bases each decision only on the most recent available data (using older data only

indirectly, for occasionally updating the probability estimates), and it also makes no

use of the age of the observations. This will work fine if the observations are of a

relatively constant age and that age is such that there is a relationship between states

seperated by that delay. However, under other circumstances important information

may be thro_m away.

For an a_iflcially simple example of how this can occur, consider a system that

deterministically cycles between three states, makilig one state transition every mi.

crose¢ond without fail. Moreover, each observation incorporates only information of

a single age; that is, each observation is a fact about what state the system w_s in

CHAPTER 3. RELATED WORK 38

at some prior time. Unfortunately, the observations are of ages uniformly _.istributed

over a range of a dozen microseconds. Therefore, the conditional probability of each

observation in each state is 1/3. That is, under Stankovic's assumptions, the obser-

vations provide no information about the state. Since the prior probabilities of the

states are also all 1/3, the decision maker has absolutely no clue what state the sys-

tem is in. Yet, Stankovic presumed synchronized clocks and time-stamped messages.

Thus, in fact any observation allows the current state to be pinned down at least to

even odds between two of the states, and frequently even more precisely.

In a periodically loaded system such as we consider, the recent past may not be

as good a predictor of the present as older data (from a full period prior). There is a

relationship between the load at any prior time and the current load, but that rela-

tionship •,_rie_. Unlike Stankovic's method, our own approach directly incorporates

information of all ag_ rather than only the most recent information, treats each

piece of information in accordance with its actual age, rather than lumping together

all latest observations, and provides optimal weighting to each age of information in

accordance to its statistical relationship to the pre_nt state.

Chou and Abraham" linear predictive estimation

Chou and Abzah_m [16] share with Stankovic and us the emphasis on explicitly

coping with outdated information, t'nlike Stankoric's method, but like ours, their

scheme attempts to exploit the time evolution of load and to estimate the current load

from mtfltiple observations of past loads, treated differently in accordance with their

varying ages. In particular, Chou and Abraham use a so-called "linear predictive"

estimation method to allow historical load information to be used to predict present

loads. This is similar in spirit to our use of time.series analysis, but differs in several

important respects:

• Chou and Abraham used a general adaptive moving-average operator for their

prediction. This requires a relatively large number of free parameters be fitted to

the load data. Moreover, no choice of the parameters adequately characterizes

the load over long time scales, so the parameters are re-fitted each time interval

at each site. This fitting requires time proportional to the square of the time

CHAPTER S. RELATED WORK 39

window size, that is, the maximum age of historical load information used.

Finally, the estimation technique is not based on an underlying model explaining

how the load chauges; this presumably explains the need for large numbers of

parameters to be continuously adjusted.

In contrast, our algorithm starts with an explicit model of how the load varies

that not only is succesful for prediction but also is consistent with an under-

standing of the underlying mechanisms. This model has only two free parame-

ters that need to be fit, and none the less is sufficiently adaptive to long-term

v_ations in loading that we can do the fitting in advance, using typical sample

load histories. The updating that needs to be done each inter_l at runtime takes

constant time (assuming precise historical information, as Chou aad Abraham

do), and incorates historical information of unbounded age.

Chou and Abraham used linear prediction separately to predict the load of each

site (on each other site), while our method does only a single prediction on each

site each time interwd, namely of the system-wide as_rage load. This is because

Chou and Abraham's version of global load balancing calls for placing each task

on the least loaded site, while ours c_dls only for the movement of work form sites

with above-average load to those _th below-average load. Chou and Abraham's

version clearly wouldn't scale well to large ensembles, and additionally can suffer

from instability when a|l new tasks generated in the entire system get piled on

to the single least loaded site, driving it to o_rloadedness.

Chou and Abraham assumed that the historical load information used _ the

basisfor the forecast is exact, _vhile we use Bayesian inference to allow esti-

mates of the historical information to be used. This does require weakening our

claim to do only constant-time computations at runtime; the Bayesiau inference

procedure involves computation linear in the time over which the historical in-

formation is improved. This time period will t:,'pically be similar to the window

size in Chou and Abraham's scheme; however, our computation is linear rather

than quadratic in this number of time intervals, and is used only to provide

benefit mksing from Chou and Abraham's scheme.

CHAPTER 8. RELATED WORK 40

Pasquale: decision theory, filtering, and randomization

Pasquale's dissertation [49] combines elements of Stankovic's and Chou and Abra-

ham's approaches, as welI as introducing some new elements. Like Stanko%_c,

Pasquale uses Bayesian decision theory to caku]ate the expected utility of sending a

job to each candidate site. (P_qusle's sample implementation is in the context of

independent user jobs in a distributed system. Only new jobs may be placed on a

remote site, and all sites are candidates.) Like Chou and Abraham, Pasquale uses

linearly filtered loads as the basis for his decisions. The unique elements to Paequale's

approach, beyond the specifics such u the details of the linear filtering, are that he

uses decision theory also to decide when it is worth communicating load information

and that he chooses a decision randomly, weighted by expected utility, rather than

alwa_ choosing the decision with the highest expected utility. In this section, we will

elaborate on each of these points.

Like Stsnkovic and Chou and Abraham, but unlike ourselves, Pesquale tries to

provide each site with information abou_ the load on every other site. Like Chou

and Abraham, but unlike. 5tankovic, Pasquale acts not on the instantaneous loads,

but rather on time-averaged (i.e., filtered) versions of thoee loads. Unlike Chou and

Abraham, who disseminate the unfiltered loads and require each site to perform the

flitting on the loads from every other site, Pasquale proposes having each site filter

its ow_ load and disseminate $he filtered version. In fact, he suggests going one step

further and disseminating only the result of rounding the filtered load to the nearest

multiple of fo,r tasks, with a bi_ of hysteresis around the midway points so that the

rounded value won't wobble back and forth if the filtered value happens to be near

the midpoint between two multiples of four.

PMquale begins his filtering with & first-order autoregressive filter, also known

as an exponentially-weighted moving _verage (EWMA). That is, if we denote the

unfiltered load at time t as l: and the filtered load as/,, Pasquale lets/t -- ,_l, + (1 -

,_)J't-I --- ,_l, + (1 - ,_),_lf-i + (1 - _)2_!t_2 ÷..., where ._ is s parameter between zex._

and one. Pasquale chose A -, .03533838 in his experiments, but doesn't report how

he made that choice; for that matter, the choice of the first-order au_oregresslve filter

is eJso unjustified. As it happens, though, EW'MA filters of this foml are the optimal

CHAPTER 3. RELATED WORK 41

forecast functions for the class of stochastic processes known as IMA(0,1,1), which we

discuss in section 4.3 as the aperiodic analog of our own load model. Thus, although

Pasq_e doesn't justify this stage of his load filtering process, it is in keeping with

our own work on statistical load modelling, as well as the long tradition of using

EWes for computer system load averages.

However, Pasquale does not stop with this autoregressive filtering (or a rounded

version). Instead, he then applies a moving average filter to the result, to attempt

to find a '%ng-term load level" rather than merely the '_undamental component"

of the load. In his experimental work, he chooses without justification to use a

moving averagethat givesequal weight to the 60 (alreadyEWMA filtered)load

valuescomputed at one second intervalsoverthe pastminute.

Pasquale pr_.nts a graph of a sample of the actual load, the result of the EWIVIA

filtering, and the result of this additional moving average filtering and the rounding.

Judging by thatgraph,the additionalmoving averagefilterdoes make the ultimate

rounded loadlevelmore broadlyreflectiveofthe pastminute ofactivRy,but actually

hurtsthe predictiverelationshipto .futureloads.SincePasquale providesno formal

model for how the load changes over time, he seems to make the mistake of confusing

fittingpastloadswith forecastingfutureloads{whichiswhat isrele_n_fordecision

making). By contrast,our own work iscarefulto startwith an explicitloadmodel

and derivefrom R an optimalforecastfunction(similarto theEWMA, but exploiting

periodicRyinour systems'loads).

Although Pasquale'sspecificillustrativeapplicationof his ideasincludesthese

quitead hoc choicesofloadfiltering,hisbasicdesignprinciplesare quitesimilarto

ours. In particular, he writes:

To conqueruncertainty.,agentsaregivenknowledge specifictothedomain

ofload dynamics. This knowledge isgatheredby observingvariablesof

intake.st,suchas [theloadlevel],and notingspecificallyhow theychange

o_er time. Most of this knowledge can be acquired o@line, applying time-

ri analysis to past histories of these variables.

This could equallywellhave been writtento describeour own work. Pasquale also

emphasizes that thisknowledge of how loadingchanges overtime isspecificto the

I

CHAPTER 3. RELATED WORK 42

particular class of system under consideration, which is other fundamental assumption

of our thesis.

Because the filtered loads are coarsely rounded (as well as heavily filtered), and

care is taken to apply hysteresis in the rounding, the rounded load levels do not

change frequently, and hence do not need frequent communication. Pasquale goes

beyond this, though, in imposing wha_ he calls 'Tmgal communications." The sites

use Bayesian decision theory to compare the expected utility loss from continuing to

use an outdated load value with that caused by the communication costs of updating

the load value. Only if the updated load v_lue will make enough of a difference in

decision making to pay for the communication is the new load value sent. This is an

important general idea, which unfortunately does not seem to fit well into our own

approach to estimating the system-wide average load in a distributed manner.

A final interesting contribution of Pssquale's, more similar to our own work than

to that of Stankovie or that of Chou and Abraham, is his use of randomization.

This is intended to addres6 a problem present in the other related approaches we've

described. Sta_wvic and Chou and Abraham do not provide any mechanism to

prevent all sites from choosing the same site [the one appearing least loaded) as the

recipient for their work. This can cause the kind of system instab|lity illustrated by

a quip of Perils, "It's so crowded that no one goes over there," quoted try Huberman

and Hogs [33].

To prevent this, Pasquale has each decision maker randomly choose among

options for job transfer destinations, including also the option of deferring the trang

The probability of deferring the transfer is set using estimates of number of jobs that

all the sites are trying to place and the total capacity of the v derloaded sites for

new jobs. The probibilities of the remaining choices are set in proportion to thei_

expected utilities. The goal of this proccu is to ensure that the total number of jobs

transferred will ,_ot greatly exceed the available capacity and that they won't all be

transferred to the same site.

In our own work, we have used a randomized choice of communications partners

and times to assure that not all overloaded sites find the same underloaded site (or v|ce

versa).We alsopreventexcesswork transferby adopting the globalload balancing

CHAPTER J. RELATED WORK 43

standard. That is, work is only transferred from an overloaded site to an underloaded,

and only enough to brine whichever of them is closer to the system-wide average

load to that average. Finally, we provide a '_eservation" mechanism to prevent two

overloaded sites from simultaneously attempting to fill the same underload on a single

underload_ site, even if the randomization should happen to allow both o_rloaded

sites to discover the same underioaded site simultaneously.

3.2.8 Information dissemination

In addition _o the techniqu_ for coping with delayed and uncertain information,

another fundamental mechanism used in this th-sis is the randomized spreading of

load information. Other authors have reported similar randomized techniques for

disseminating information, as well as non-randomized techniques with similar goals.

Drezner and Barak [22, 23] proposed and analyzed a randomized information

dissemination mechanism .simfla_ to ours and applied it to load averaging [6]. In this

algorithm, each site sends its estimate of the average to one other randomly chosen

site each time interval. Our own algorithm generalizes this by sending the estimate

to a randomly chosen sample of sites of some constant size. In section 4.2, where

we ualyze our algorithm: we. show that the ori_nal version (where the sample size

is one) is only optimal under certain rather narrow circumstances that don't include

our target system.

Barak and Kornatzky [7] described these same two algorithms in the context of

genera] design principles w]_ich motivate them, as well as providing an extension to

the first algorithm that allows each size to obtain information from each of a random

sample of other sites of predetermined expected size. This technique, while potentially

useful for local load balancing or load sharing, does not appear useful for our goal of

global load balancing.

Barak and Shiloh [8) implemented a similar load information dissemination mech-

anism in the MOS distributed system; it provided information on the individual loads

of a sample of sites rather than estimating the average load. In order for this algo-

rithm to scale well in cost as the ensemble is increased in size, it is necessary that

the sample size remain fixed at a comparatively small value. As with Barak and

CHAPTER 3. RELATED WORK 44

Komatzky's technique for randomized sampling, this could serve local load balancing

or loci sharing, but not global load balancing.

Alon, Barak, and Manber [2] analyzed techniques similar _o those of Barak and

Drezner but using deterministic communication patterns in place of randomization,

while retaining some degree of robustness (if any site stops participating, information

from any othex site will eventually make its way to all other sites). These patterns

again presume that each site sends to only one other site per round, and so are

likely also suboptimal under our circumstances. Further, we fa_r the randomized

versionbecauseitalsoprovidesa stablebasisformatchmaking between overloaded

and underlosdedsitesand because itiscomparativelyunlikely_o cause systernatic

patternsofnetwork congestion.

3.2.4 Migration and communications redirection

One class of underlying mechanisms that this thesis takes largely for granted is t_e

ability to move objects and their associated tasks from one processing element to

anoth-.r, including in particular the ability to redirect all messages for tha$ object to

the new site.One reasonwhy thisistreatedso lightlyhereisthat ithas been quite

extensivelyresearchedby others,includingat leastthreeotherPh.D. tl_eses.

Fowler'sthe.sis[28]providesamortized analysisof upper and lower bounds and

estimatesofaveragecasecostsforseveraldecentralizedmessage redirectionprotocols

based on forwardingaddresses. In particular,he shows the benefitsgained from

compressingforwardingpaths when they are used, by modifying each forwarding

adaressaccessedin the courseofdeliveringa particularmessage to pointdirectly_o

the siteto which the message was ultimatelydelivered.This isthe techniquewhich

we ruseinour experimentalwork.

Arts},,Chang, and Finkel[4]describeda distributedoperatingsystem,Charlotte,

in which processmigrationwas actuallyimplemented. In Charlotte,no information

(includingforwardingaddresses}islef$behind when a processismigrated.Instead,

allcommlmication partnersare notifiedof the new locationbeforethe mi_a¢ion

iscompleted. This ispracticalin par because Charlottecommunication linkscan

onlyhave a singleprocesson each end, so itischeap to main1_silla "back pointer"

CHAPTER J. RELATED WORK 45

to the process on the other end of the link. (In fact, Charlotte links are two.way

communications channels, so there is no distinction between forward pointers and

back pointers.)

In our LAMINA system, by contrast, an object may receive data on a single

stream from many potential senders, only some subset of which may actually send

anything in the near future. Thus, it would be expensive to maintain a complete se_

of back pointers and to update all of the senders. (This was discovered empirically

in preliminary experiments where this scheme was used.) Doing so in a synchronous

fashion (as in Charlotte) is particularly unattractive in a large-scale real-time system

such as ours, since it could substantially delay migrations.

Ravi's thesis [52, 51] goes beyond Fowler's primarily in that it attempts to prevent

long forwarding chains even for the first message sent by a particular sender after the

recipient has migrated. This is done by preemptively multicasting the new location

to progressively _'ider network neighborhoods after progressively longer delays. Thus

nearby sites have quite up-to-date location information, while those further off have

less up-to-date information. Ravi showed this to provide good performance by using

three assumptions, none of which are true in the systems considered in this thesis:

I. migrations are random walks within the network topology, hence spatially local

2. communication frequency is related to spatial distance

3, communication latency is proportional to distance in the net_'ork

It is because none of these apply that we have not adopted Ravi's technique.

Jul'sthesis[3{_]providesa complete d_ign of a system forfine-grainedobject

migrationin a localareanetwork of workstations,includingnot onlyobjectfinding

basedon Fowler'swork but alzotheencodingoftheobjectsand tasksfortransmission

and decoding upon receptionand a distributedgarbage collectionalgorithm.Jura

encoding techniqueforobjectsrelieson descriptorsto findallembedded pointers,

whileour simulationpresumes taggingsupportforthispurpose instead.Jul'swork

providesa good exmnple ofthe engineeringneeded to make objectmobilitya practi-

calreality.The garbagecollectionalgorithm,forexample, might meritconsideration

CHAPTER 3. RELATED WORK 46 ...

in an actuM implementationof LAMINA on a realensemble machine. For the ex-

perimentsdescribedin thisthesis,however,we used a simulatorthat doesn'tmodel

garbagecollectionactivity.

Totty [58]developedforhisBachelor'sthesisan operating-systemkernelsupport-

ingobjectmigrationon theJellybeanmachine,a modern ensemble architecturerather

simil_to our o_u_CARE. He used a forwardingaddressscheme with the forwarding

addressesstoredinlimited-sizeassociativetranslationbuffers.When itprovesneces-

saryto£nd an objectwhose addresswas displacedfrom the localtranslationbufl'er.

the object's"birthsite"(which isincludedin the objectidentifier)isused as a fall-

back guaranteedto have an addressforthe object.This tradesfrugalityof memory

consumption forpotentialbottlenecksatthe birthsite.In our simulation,we chose

instead to presume that ample memory was av_lable at 8.]1 sites, in part because

that. reduces the number of anomalous performance effects that can complicate the

interpretation of our experimental results.

3.3 Summary of related work

Research contributions in the general area of load distribution are distinguished not

only by the problem-solving methods employed, but also more fundamentally by the

problem attacked. For example, any method for mapping a structured data domain

onto the network structure at compile time is fimdamentaIly distinct from any method

for independently siting individual obje_-ts at runtime. Thus, the first section of this

chapter is best seen as illustrating the d_gree of similarity bet_'een our own problem

(globalk load balancing migration) and other load distribution problems, rather than

focusing on the techniquex used.

Although this taxonomic view serves to delimit the problem area in which our

contributions fall, it ha_ the unfortunate efl_ect of comparing our work to dissimilar

prior work rather than similar. To remedy this, the second section of this chapter

highlighted particular areas of similarity between our work and prior work. The sim-

ilarity to our own work grew progressively stronger as we moved from each of the

four areas to the next. There is comparatively little in common betwcea our work

!

CHAPTER 3. RELATED WORK 47

and other real-time system work; instead, our work is more closely aligned with other

attempts to use outdated load iaformation. Even in this latter area, our techniques

are novel. By contrast, our information dissemination algorithm directly generalizes

and improves upon a prior algorithm, and in the area of object migration and com-

munication redirection this thesis offers nothing new beyond concrete implementation

choices.

This background serves to set the stage for the following chapters. We shall present

a new approach to using uncertain historical load information and a generalization

of Drezner and Barak's randomized averaging algorithm in the next chapter, while

leaving the migration rnech_aics for the chapter on implementation issues.

Chapter 4

Modeling and Algorithms

Our load-balancing algorithm consists conceptually of the following components; in

actuality,some ofthe components areintegrated,aswillbe seenlater.

• A load metricisused locallyon each processingelementto quantifythe load

on thatprocessingelement'sevaluator(main processor).

• A distributedaveragingalgorithmestimatespast system-wideaverageloads:

the estimatesimprove in accuracywith time.

• The time-seri_sforecastusesthoseestimatedaverageloadsforpast times to

estimatethe currentaverageload.

• A partner-_ekingmechanism allowsoverloadedand underloadedsitesto find

eachother.

• A policy de_errnines which objects to migrate in order to shift a given amount

of load between a given pair of sites.

• The actual migration mechanism relocates the arbitrarily graph-structurcd state

ofeach migrated objectand updates addressesused by otherobjectsto com-

municate with the migrated objects.

The migrationmechanism willbe introducedin the next d2apterin the contextof

the actualimplementation;the othercomponents aredescribedin the remainderof

this chapter.

48

|1

CHAPTER 4. JVODELING AND ALGORITHMS 49

4.1 Load metric

One of the first questions confronting the designer of a load balancing system is

"What is load?" If the load is to be balanced, imbalances must be identified, and

that requires quantifying the load on each site.

The first question is which system resources should have their loading balanced. It

is perfectly plausible to try to balance the use of the various communication channels,

message touters, or housekeeping processors, or to balance the amount of memory

used at each site for storing objects' state. However, this thesis focuses instead on

balancing only the use of the evaluators, the main processor at each site. This is

because previous experience with the s_stem identified this as particularly problem-

atic, and because evaluator load imbalances seemed to be the underlying cause of

many other imbalances. For example, communications congestion was also limiting

system performance, but generally was caused by the heavy traffic to and from an

especially busy e_uator. Similarly, the housekeeping processors (operators), which

were typically lightly utilized, often were especially busy processing context switches

and me,sage receptions and transmissions on precisely those sites where the e_luator

was very busy.

Having chosen to target the evaluator processing load, it is still necessary to

choose a particu]a_ metric of that load. Utilization (i.e. the percentage of time busy)

is a poor metric, because it saturates when the processor is fully utilized, failing

to differentiate between a processor that has just enough work to keep it busy and

one which is swamped with a long queue of processes waiting to run. Therefore, we

are lead to the (conventional) choice of measuring the size of the queue of waiting

processes, In our object-oriented system, this amounts to measuring the queue of

messages waiting for delivery, aggregated over all the objects located on the site.

The ideal unit of mea_mre for these message queues would be the nanosecond--

if the processing time needed to respond to <inch message were known, s sum over

the pending messages of those processing times would provide an accurate picture

of the work available on that site. In the system under consideration, however, the

processing times are not available a priori; since they tend to be relatively uniform,

I I

CHAPTER 4, MODELING A_'D ALGOPJTHM$ 5O

however, a simple count of pending messages serves as an adequate load metric,

This is what was in fact used for the experiments described in this thesis. At the

expense of _eater overhead, a more precise estimate could be obtained by checking

the message type and recipient class for each queued message and looking up in a

table the average execution time for that method. One reason this wasn't used i_

the experiments described here is that it would have produced unrealistically perfect

estimates of the execution times, since as reported in section 2.4, the same technique

was used to provide "the execution times for the simulation.

4.2 Distributed averaging

A primary contribution of this thesis is the use of an explicit time-seri_ model of

loadingto allowsitesto estimatethe currentsystem-wideaverageloadwhen allthey

can obtaininformationabout ispastaverageloads.This isessential,because inan

ensemble architecturetherecan neverbe up-to-dateglobalinformationavailable.In

the followingsectionswe willsee how thisisdone;fornow, we turn ouz attentionto

how the historicaldata iscollectedthatservesas the foundationforthatprocess.

Because thisdata is used togetherwith the time-seriesmodel, the method of

determiningpastaverageloadscan be as slowasnecessaryto fitwithina constrained

resource-utilizationbudget,even ifthatwould be too slowtobe useddirectlywithout

forecasting.Obviotmly,however,thefasteritis,the lessextrapolationthe time-series

model willbe forcedto do, and consequentlythe betterwe can expectour results

to be. In thissectionwe optimizethe speed of a particulardistributedaverage-

determinationprocess,subjecttoconstrainedresources.

This sectionalsodevelopsan _xplicitmodel of.how the historicalinformation

impzoves in accuracywith age. In section4.4 we willshow how ibis model can be

used togetherwith that forthe loadingto allowoptima]integrationof the data of

varyingage (hencerelevance)and accuracy.This isanothermajor contributionof

the thesis.

n • _ ml I .. 1........ II __ • II

CHAPTER 4. MODELIA'G A_VD ALGORITHMS 51

_T

One strategic decision is the general s_yle of distributed averaging algorithm. This

thesis focuses on a randomized algorithm that ignores the locality of processing ele-

ments in the interconnection network. This choice allows even the earlier estimates,

incorporating data from only a few processing elements, to be (statistically) repre-

sentative of the whole system, rather than of a limited neighborhood. This can be

important if the loading of neighboring processing elements is correlated, as is often

the case. Because the target architecture incorporates cut-through routing, the lack

of communications locality is not as major an obstacle to e_ciency as it otherwise

would be. Pinally, this raudomize<t, non-local averaging process integrates well with

the partner-seeking component to allow non-local object migrations, a fundamental

objective of our design.

Our average-determination process is a variation on one proposed by Barak and

Drezner [6]. The following description shows the estimation of the average load for

only a single time; the actual implementation needs to essentially run one copy of this

algorithm for each time interval, (We a_ume that the time period of the input has

been divided into some integer number of intervals for load estimation.) The, sites

begin at some time f with their own load as an estimate of the average at _hat time.

They then go through a number of rounds in which they improve their estimates

of the average load at time t. In our implementation, the rounds of improvement

correspond with the time intervals used for load measurement, though in principle

either could be an arbitrary multiple of the other./_ote that the estimates are being

increased not only in accuracy but also in age; seen in absolute time _he improved

_timates m the end of each interval are still of the average at time _, but seen in

relative time they have changed from being estimates of the average _T intervals ago

to being estimates of the average _T + ! intervals ago.

In each interval each site multicast8 im current estimate to some fixed number (m)

of randomly chosen sit_, At the end of each interval each site replaces its current

estimate with the average of that estimate ,nd the estimates received during the

interval. In Barak and Drezner's version of the algorithm, m = 1. We investigate

below alternative values for this parameter.

CHAPTER 4. MODELING AND ALGOPJTHAf$ 52

Provided that there is a large number of processing elements, Batik and Dre'_er

showed that the variance of the estimates about the true average decremses geometri-

cally with the number of rounds. The analysis below shows that the rate of decrease

per round is greater for larger values of m. This suggests that we should choose a

large value of m to speedily arrive at sufficiently good estimates. On the other hand,

each site will be interrupted m + 1 times in each interval on the average (once b), an

interval timer and an average of m times by incoming messages), so a high value of

m may necessitate a longer interval and actually result in a slower convergence on

the true average.

We will show how a balance can be struck between these considerations. Our

go_/is to choose m so as to optimize the rate of convergence (measured re]afire to

time, not intervals) gi-ven a fixed limit on the rate at which the averaging process

may utilize system resources. For illustration we will take a simplified estimate of

the overhead of conte_ switching, message transmission, and message reception to

be the limited resource. A more careful accounting of actual operator processing and

operator/network bandwidth gives the same result.

In contemporary systems, it is expected that context switching and message over-

heads at the sender and receiver will be ohe limiting resource-rather than raw com-

municatioas bandwidth, for example [3, 18, I(}]. (The actual computation involved in

averaging together a few estimates is not likely to dominate.) Message transmission

and reception overheads as well as context-switching overheads are approximately

proportional to ,, + I in our system because it provides hardware support for multi.

cast [13]. (Thus there is one transmission and m receptions, rather than m of each.)

We therefore calculate the choice of rn which will optimize the rate of convergence of

the average estimates, subject to a fixed interrupt rate.

Barak and Drezner showed in general that the variance decreases in each round

by a factor of (_,_=o _)-1, where p_, is the probability that a site receives estimates

from k ._ther sites in an interval. Since in our case each of the n sites sends its

estimate to m random]_y chosen from the ,, the number of estimates received _]l be

binomiallydistributed,with Pk = (_)(m/.)k(l- .,/n)'_-s'.

------ • i I II llll II

|

CHAPTER 4. MODELIA'G AND ALGORITHMS 53

Plugging this in, sod using a mathematical trick borrowed from Barak and

Drezner's analysis, we see that the rate of convergence is

This is approximately m/(1 - • "'n) when n islarge. (Note that n doesn't need to be

especially large for this approximation to be a good one. For example, for m = 3,

even at n = 64 the e._or is less than one percent.)

The number of intervals needed to achieve a particular degree of convergence

is inversely proportional to the logarithm of this number, while the length of each

interval must be a fixed multiple of m + l, according to our model of what constitutes

fixed resource consumption. Since the time needed to achieve this fixed degree of

convergence is the product of the number of intervals and the length of each of

tho_e intervals, the time must be some proportionality constant times _.

Therefore, for best performance we want to find the value of rn which minimizes that

fraction. Constraining m to be iu:egral, we find that the optimum is three. It might

be possible in principle to drop the requirement that m be aa integer, e.g. by having

each site make a randomized choice of multicast breadth each interval, However,

examining the graph of this function in figure 4,1 we see that three is close enough

to the true optimum that this doesn't appear worthwhile.

This analysis allow.s us to conclude that if interrupt handling limits the rate at

which averaging actions can be performed, each site should send to three others ir

each in_rval, rather than one as B_tak and Drezner _uggest, to optimize the speed

of convergence of the average estimates. The next question is, how sensitive is this

conclusion to the assumption that the interva_ length would have to be proportional

to rn + 1 in order to stay within a fixed resource budget? In particular, _'e will show

that the cJloice of m = 3 is reasonable given a more complete model of costs in CARE,

sad characterize the circumstances under which Bamk and Drezner's choice of m - 1

makes sonic.

II I

CHAPTER 4. MODELING AND ALGORITHMS 54

f(m)

Figure 4.1: Averaging time vs. m (cost oc m + 1). Assuming that the resource
m+l

utilization per interval is proportional to m + 1, this graph of .f(m) = _m-lo_l-e-')
shows that the optimum value for m is near 3.

| nn • ii r

CH.dPTEI_ 4. MODELING AND ALGORITHMS _5

In any implementation of our algorithm, there will be some work that needs to

be done each interval independent of ra, while other costs will scale proportionately

to rn. Thus, the total cost of each interval will be some linear function of m, i.e.

Am + B for some constants A and B that reflect the hardware architecture, software

impleme,_tation, and choi¢2 of cost model (i.e., which resource constrains the intervsh

network to operator interface bandwidth, operator processing time, total network

bandwidth, ...). The foregoing anal)_sis, which assumes that the cost of each interval

is proportional to re+l, applies to the case where A -- B, i.e. where the fixed overhead

cost of each interval is equal to the extra cost incurred per target of the multicast.

For the more general case, where A # B, we need to find the integer ra which mini-
7n4._,

mites some member of the parameterized family of functions f_(ra) - los,v-los(l-,-,,),

where the parameter c_equals B/A. One interesting limiting case is c, -- 0, i.e. all cost

is directly related to ra, with no fixed per-interval cost. Taken at face value this seems

implausible, but it accurately models a system in which the rate of load aver_,ing

activity is limited by operator to network interface bandwidth and there is no nem'ork

support for mul_ic_st (unlike CARE). This change, from overhead being 100% of the

per-target cost _o it being 0_, is e. dramatic change, since we are considering small

values of m. For example, it means that the per-interval cost with m = 3 is now three

times as high as for rn = I, while with our previous cost model m -- 3 would only

be twice u expensive as m = i. Therefore, it should come as no surprise that the

optimization problem is qualitatively quite different, as shown in figure 4.2. Since this

function is monotonically increasing, the optimum choice is m = 1, i.e. Barsk and

Drezner's original proposal. Filling in the gap in the family of curves between _ _- 0

and a = 1_ _gure 4.3 shows the functions for _ =- 0_ .2, .4, .6, and 1. As _ increases,

the function becom_ more "hooked" and the optimum value of rn increases. If a_

implement£tion had particularly high overhead costs, there is nothing to stop _ from

being even la.rger than I; as can be seen in figure 4.4 (which shows a = 1, 1.2, 1.4,

1.6, 1.8, and 2), the same general trend in the functions' behavior continues.

Ilwll

CHAPTER 4. MODELING AND ALGORITI-IMS 56

f(m)

2.8

2.6

2.4

2.2

Figure 4.2: Averaging time vs. m (cost o¢ m). Assuming that the resource utiliza-

tion per interval is proportional to m results in a qualizatively different optimization
problem. This graph shows f(m) = , ,io&m-l_{1-¢-m)'

I In_

CHAPTER 4. MODELING AND ALGOPJTHMS 57

f(m)

4

5
m

Figure 4.3: Averaging "_ime vs. m (0 < o < 1). This graph shows members of the

family f,(m) = '_'_ As c, increases, so does _he optimal value of m.lolm-loS(l-_-")'

CHAPTER4. MODELING AND ALGORITHMS 58

f(m)

5

4.75

4.5

4.25

3 4
in

3.75

3.5

Figure 4.4: Avera:_ing time vs. rn (1 _< a _<.2). This graph shows further members of

the family/_(m) = l_m-_ot_1-,-'_)' for larger values of a.

CHAPTER 4. .VIODELEVG AND ALGORITH,%f$ 59

If we make a table of how the optimal integer value for rn depends on _, we get

optimal m

I

2

3

4

0 < a _< .207

.207 _ e <_ .695

.695 _< _ _< 1.51

1.51 _< a <_ 2.64

(these tln'eshold values for a are rounded to three places). From this, we can con-

clude that Bsrak and Drezner's choice of rn = 1 is only optimal under very limited

circumstances, namely when the marginal cost of an extra multicsst target is at least

f_ve times as high as the fixed cost of each averaging interval. (Note that it is a bit

unfair to refer to Barak and Drezner's choice of m - 1, since their algorithm didn't

have the parameter m, i.e. didn't even open up the option of larger values.) Another

conclusion we can. reach is that our proposal of m = 3 is comparatively insensitive

to the details of the cost model, in that a modestly large region around our original

- 1 still makes m = 3 optimal. Even if the per-interval overhead is as little as 70%

of the per-target cost or as high as 150% of that cost,, ra = 3 wi]l still outperform

other choices.

For the actual CARE implementation described in the next chapter, the number of

operator processing cycles spent on the distributed averaging algorithm each interval

is 540m + 417, according to the simulation cost model. Thus if we take operator

processing as the limitecl resource in CARE, we have Q _ .8, and are therefore

correct in choosing rn - 3. If instead we take the bandwidth of the operator to

network interfaces to be the resource which limits averaging activity, then the same

simulation cost model for the CARE implementation yields a _ .9, so a_so within the

region where rn - 3 is optimal. (It might appear st first that this latter value of

would necemarily be exactly 1, since each message is sent once and received m times,

as earlier in this section. However, this fails to account for the fact that the sender

has to also provide ra destination _dresses to the network,)

In ,_ummary, we can cone]uric _hat if we allo_' only a fixed fraction of _he CARE

operators' capacity to be spent on lo_! averaging (accounting not, only for interrupt

CHAPTER 4. MODELING AND ALGORITHMS 60

handling and message transmission and reception, but also the actual averaging work

and other overheads), each site should send to three others in each interval, rather

than one as Barak and Drezner suggest, to optimize the speed of convergence of the

average estimates. We have also along the way modeled how the estimates improve

in accuracy with age, which will be important in section 4.4.

4.3 ARIMA load modeling and forecasting

The preceding section provides a method of obtaining information about past system-

wide loading; in this section we will show how the evolution of the load over time

can be modeled, which will allo_' that historical information to be put to use in

forecasting the current load. This model is also important because as we have seen,

we can quantify the degree t_ which older estimates are more _.¢ur_te. Thus we are

now challenged to quantify the counterbalancing force, namely the degree to which

those older estimates are (in general) less relevant. The following section synthesizes

these two models to optimally weight the data of each age; for now, we will stick

to modeling how the load varies with time. This load modeling is in itself a major

contribution of the thesis.

Note tha_ although in the long term older loads are less relevant, this is not always

the case in the short term. In particular, because the systems studied in this thesis

exhibit statistically periodic loads, load information from a full period ago may be

more relevant than recent load information. We are still faced with the problem

of integrating toget]_er data of _rying accurac7 and relevance, where the weight to

assign to each datum must reflect these two counteracting considerations. We have

greater hope with a periodic load that our resulting estimate will be usefully precise

than with an aperiodic load. This is because we have data available for which both

the _curacy and. the relevance are reasonably high.

We have cho_n to use the general family of stochastic process models known as

"ARIMA," i.e., autoregressive-integrated moving average proceH models. This choice

of model is often called "Box-Jenkins analysis" beeauae it wag popularized by Box

and Jenkins [II], These modek are attractive because highly parsimonious models

CHAPTER 4. .VIODELhVG AND ALGOPJTH.VIS 61

(i.e., models with few parameters requiring empirical fitting) have proven adequate

for many forecasting and control applications. In parzicular, the subclass of AR_,IA

models we will use (so-called multiplicative IMA models, which will be explained

below) have been successfully applied to the parsimonious modeling of seasonal time

series for forecasting purposes [11, Chapter 9]. The statistically periodic nature of

seasonal data (sales, for example) is similar to that of the syszem loading in our soft-

real-time s_stems. In both cases, the behavior in ea_ period is similar to that in

nearby periods, but there is no exact repetition from period to period and in fact the

overall pattern may gradually shift so that far apart periods bear little resemblance.

Further, these models provide adaptive mocleling ofintra-period as well as in_er-period

patterns.

An AB/MA rood4 of a. time-seri_ characterizes it by a linear filter which trans-

forms a white-noise series (a series of independent normal deviates) into the modeled

series. Specifically, the filter is decomposed into a composition of stationary autore-

gressive and moving-average filters with summing (integration) s_ages to model any

n.on-ststiona_.D,. (A moving.average filter's output is some linear function of the

current input and some finite number of previous inputs. An autoregreasive filter,

on t,he other hand, has as its output some linear combination of the current input

with some finite number of pre_ious outputs. A stationary series, roughly speaking,

is one that has a well-deflned long-term average.) A single summation produces a

series non-stationa, ry in level but otherwise homogeneous; double summation allow-s

the slope as wen as the level to shift, etc. For periodic series, these concepts can be

applied both to the variation between consecutive measurements end to ,;he v_iation

between corresponding measurements in consecutive periods.

Box and Jenkins recommend identifying a potential model for an observed series

by the following steps:

1. Perfonu sufficient differencing on the series to render it stationary, as evidenced

by the autocorrelations.

2. Examine the azttocorrelations of _he resulting stationary sequence, looking for

the characteristic pat.tern of one of the simple ARMA models. (Note that, we are

CHAPTER 4. MODEL&¥G AND ALGORITHMS 62

left with only an ARMA modeling problem, not a full ARIMA one, because the

differencing in the preceding step corresponded to the summation component

of the model.)

6 Form a prelimina.,T estimate of the model parameters by solving for them in

equations between the observed autocorrelations and those predicted by the

model.

4. Use the sum-of-squ_es surface to refine these preliminary parameter estimates

to approximate least-squares estimates.

. Use diagnostic tests on the "residuals" (differences between the model's predic-

tions and actual dal:a) to test the adequacy of the model (for a perfect model,

the residuals should be white noise).

We have performed this modeling for two different sofureal-time systems: the ELINT

system used as the basis for our load balancing experiments and the AIRTRAC-DA

system [45]. The latter was not kept up to date with changes in the underlying system

software, to the point of no longer being executable, so we were unable to perform

load balancing tests on it. None the less, the successful modeling of its load described

in [30] provides some evidence of _he more general applicability of our approach.

In both cases, the modeling procedure described above leads us to a multiplicat]ve

IMA model oforders(0,I,I)x (0,I,l)p,where p isthenumber ofloadmeasurements

per inputperiodofthe system.What thismoans isthatthe overallmodel separates

neatlyintothe compositionofan intra,periodmodel with an inter-periodmodel,and

chatboth components combine a "zeroth-order"autoregressiveoperator(i.e.,no au-

t.oregressiveoperator),a first-ordermoving averageoperator,and a singlesummation.

(Itisbecausethereisno autoregressivecomponent thatthisiscalledan IMA model,

ratherthan APHMA.) Ifwe denotethe white noiseseriesby at,the loadseriesby

zt,and the parametersof the two moving averageoperatorsby @ and O, the model

can be writtenas z, : zt-1+ #t-p- zt-p-,+ at- 8a,_,- ®at-p + 8®at-p-1. The

parameters8 and ® must eachbe lesst]mtone inabsolutevalue;thevarianceofthe

white noiseseriesa,isalsoa parameter,which we'llcall_. In the above equation,

; _msi _ II _I I I

CHAPTER 4. MODELIT_rG AND ALGORITHMS 63

the zt..1 sad z,.p terms come from the intra-period and inter-period summations, re.

spectivel._; with the -zt-p-1 term being from their interaction. Similarly, the -Sa,__

and -8at-p are from the two first-order mo_dng average operators, ,_ith the 8$a,_p-1

being their interaction.

Intuitively this model makes sense. Looking at the aperiodic component, what

we are saving is _:hat the load on the system at any instant is the same as it was

the previous instant plus some perturbation (hence the summation operazor). The

perturbation is not independent from moment to moment, however. Son_e fraction

determined by 8 of eachperturbationiscarriedoverto the next interval(hencethe

moving averageoperator).That thisisa reasonablemodel forthe ups and downs

of processingload isevidencedby the factthat itsoptimal forecastfunction,the

exponentiallyweighted moving average,is the standard in computer system load

estims.tion.The periodiccomponent has the same form, and essentially,statesthat

the longerterm shiftsin loadingcausedby entriesand exitsof aircraftfrom the

observationarea,e.g.,followsthesame patternastheshortterm shiftscausedby the

activationand completionofprocessingzasks.

4.4 Time-series forecasting from average

estimates

The time-seriesmodel ofsection4.3world directlyshow how to forecastthe current

system-wideaverageload,ifwhat we had was preciseobservationsof the average

loadup untilsome previoustime,and no obser_'ationsthereafter.However, what the

distributedaveragingalgorithmof section4.2 actuallyprovidesas raw materialis

observed est,imatesofthe average,with accuracygeometricallyincreasingwith age.

Thus the informationwe have combines two sourcesofuncertainty:

I. the uncel_ainconnectionbetween the estimatedpastloadsand the actualpast

loads,and

2. the uncertainconnec_icnbetween pastloadsand thecurrentload.

• :_1 i _

CHAPTER 4. MODELING AND ALGORITHMS 64

The two models from the precedingsectionsdirectlyaddressthesetwo sourcesof

uncertainty,;one describesthe accuracyof the varioushistoricalestimates,and the

otherdescribesthe autocorrelationstructureovertime ofthe load.The goalofthis

sectionisto integratetogether,theset"womodels so as to produce the bestpossible

estimateofthe currentload.We do thisusing the techniqueof Bayesian inference;

the followingsubsectionservesas an introductionto the conceptof Bayesian infer-

ence,usinga simplifiedversionof the problem. We then move on to generalizethat

univariatesolutionto a multivariateversionthatmeets our actualneeds.

4.4.1 Bayesian inference

To clarifythe situation,considerforthe moment a simplifiedversionin which the

distributedaveragingalgorithmprovidesexactaverageloadsforallpasttimeinter,'als

and estimateswith a known uncertaintyfor the currenttime. In what follows,we

willcalltheseestimatesprovidedby the averagingalgorithm"observations"rather

than estimates,so Ls to reservethe latterterm forestimatesbased at leastin part

on the time-s_desmodel. To be more specific,assume that the observationscome

from a normallydiswibutedprocess,with the truecurrentaverageloadas mean and

a known variance;we willcallthisdistributionthe observationdistribution.

Even without the averagingalgorithm'sobservationof the currentload:we can

estimatewhat the current,loadisusingthe priorloadsand the time-seriesmodel. In

fact,sincethe time-seriesmodel isin terms ofan explici_stochasticprocess,we can

not onlygiveour bestguessbut alsoquantifyour degreeofcertaintyby expressing

this'_prior"estimateas a probabilitydensityfunctionforthe currentload.Using an

IMA model as in section,1.3,thispriordistributionwillbe normal.

Now the averagingalsorithmprovidesan observation,which givesadditionalin-

formationabout the currentload. Because of our assumption about the.a_'eraging

algorit,hm, thisobservationisa sample drawn from the normal observationdistribu-

tion,which has the unknown actualcurrentloadasitsmean and the known accuracy

ofthe estimateas itsvariance.So,we have a normal priordistributionforthe mean

ofthisnormal observationdistribution,know itsvariance,and now have one ss_nple

drawn from it.

CHAPTER 4. MODELING A,WD ALGORITH.%I$ 65

If that sample is a surprising one, i.e. lies far from our prior estimate of the

mean, then we will want to revise that estimate of the mean. In fact, we will always

revisetheestimateunlessitexactlyagreeswith the observation;the onlyquestionis

one ofdegree.How much we revisethe estimatewilldepend on how sttrprisingthe

observationisand how confidentwe were inour priorestimate.In otherwords,it

depends not onlyon thedifferencebetween the observationand the priorestimateof

the mean but alsoon the relativevariancesofthe two normal distributions.

Ifthe priordistributionhas a large_,ariance(i.e.we didn'thave much confidence

in our priorestimate)and the observationdistributionhas a smallvariance(i.e.an

observationgeneratedby the processisverylikelyto be near itsmean), then we will

largelydisregardthe priorestimateand put most ofour beliefinthe sample.

Conversely,ifthe priordis_ribtttionhas a smallvariance(i.e.the actualloadwas

expected to fallvery.near the priorestimate)and the obsert_¢iondistributionhas

a largevariance(i.e.thereislittlereasonto expecta singlesample drawn from it

to be near itsmean), then we willlargelydisregardthe observationand make little

adjastmentto the priorestimate.

Justasthe priorestimateisexpressedasa fullprobabilitydensityfunction,sotoo

we can expressour adjusted "posterior"estimatea.sa probabilitydensityfunction.

This posteriordistributionincorporatesinformationfrom both thetime-seriesmodel

and the model ofthe averagingalgorithm'saccuracy.

In thisexample,where both the priordistributionand the observationdistribu-

tionarenormal,ithappens thatthe posteriordistributionwillalsobe normal. Inthe

jargonof Bayesianinference,normal distributionsare a "conjugatefamily"forthe

mean ofnormal processes.Moreover,the mean and _riance of the posteriordistri-

butioncan easilybe calculatedfrom the mean and varianceofthe priordistribution

and the varianceof the observationdistribution.In _he next subsectionwe show

thiscalculationin matrix terms for a muRivariategeneralizationofthissimplified

example,

CHAPTER 4..%fODELI_'G AND ALGORITtI.VIS 66

4.4.2 Estimating from uncertain history

We have described above the basic approach to integrating information from his_o_,

and the rime-series model with information from the distributed averaging algorithm,

using Bayesian inference. We now have to see how this can be applied when the

historical information is itself uncertain, since it comes from the same distributed

averaging algorithm.

In order zo simplify the formulation of this problem, we will pretend that we

do know exactly the average loads up through some "lead time," 1 intervals ago. Al-

though this is strictly speaking false, the older estimates from the averaging algorithm

arequitereliable.Recallthateach intervalofaveragingreducesthevarianceofthese

estimatesby more than a factorof three.Because ofthisgeometricconvergenceof

theaveragingprocess,itispossibleto selecta ,,_lueofIthatisboth reasonablysmall

and alsomakes the above fictionsui_cientlycloseto true.We can then run !copies

of the averaging algorithm together, so that each interval the average from I intervals

before achieves fully-xefmed status, and the newer averages are each refined one step.

(Rather than having _ independent copies running, they are actually fused together in

our implementation, with each interval a single multicast message conta|ning l values

being transmitted by each size.)

The key insightisthatwith thissimplification,we are in a situationcompletely

analogousto thatofthe presdoussection,where we had exactknowledge ofpastloads

and a singleobservationofthe presentload.It'sjustthatthe "presentload"we are

observingisnow the vectorofloadsforthe latest!intervals.This observedvectorof

estimatedaverageloads,which resultsfrom the distributedaveragingalgorithm,isa

sample ofa multiv_iateprocess.We wil!approximatethisprocessby a normal one,

rel)_ngon the cen1:rallimit:theorem and the largenumber of processingelementsas

justificationforthisapproximation.

The analysisofsection4.2givesthecovariancematrixofthismultivariatenormal

process. Vv'ewould liketo estimateitsmean vector. Our priorbeliefabout ',he

mean, f_om the time-seriesmodel,isalsonormallydistributed,with both the mean

and the eovarisnceknown. This isconvenient,because as in the univariatecase,

the multivariatenormal distributionsform a familyof conjugatedistributionsfor

CHAPTER 4. MODELING AND ALGORrfHMS 67

the menu of a multivariatenormal process.That is,our posteriorbeliefabout the

proeess'smean willalsobe normally distributed,and itsmean and covariancecan

readilybe calculatedfrom the mean and covarianceofthe priorand the covariance

of the process.

This isa bitconfusing,because of how many means and covariancesehereare.

Therefore,let'sintroducea bitofnotation.We willcallthe actual,unknown system-

wide averageloadsforthe most recent!inter_Isz. (We willuse subscriptsin the

range (I- 0,...,0 with 0 beingthe currentinterval.)The distributedaveragingpro-

cessprovidesuswith a sau_ple,which we willcallx, drawn from a normal distribution

with mean z and covariancematrix E. V,'eexpressour stateof knowledge about z

as a probabilitydensityfunctionfor the random variable3. From the time-series

model and data olderthaa Iintervalswe willcalculateanormal priordistributionfor

which willha_ mean _ and covariancematrix]_.Lastly,our Bayesianinference

willresultin a posteriordistributionfor_ which isalsonormal, and the mean and

¢ovafianceofwhich we willcallS and _. Symbolically;

/_l,(xlz)= N(z,Z)

h(z) = _x'(_,/:)

hl_("Ix) = fiii(xlz)/_(')
fYoof_li(Xiz)/i(z)dz

Solvingfor_ and _ in the above equation,we get

= (_:-_+ Z-_)-_

i = _:_-:_+_Z-'x

= _+ _Z-X(x- _).

Note that thisisactuallymore than we need--allwe c_reabout isthe valueof

io,our best guess as to the currentsystem-wideaverageload. Therefore,while it

isconvenientto initiallyformulatethe problem as ifwe were calculatingthe entire

nu Iron

CHAPTER 4. MODELING AND ALGORITHMS 68

vector, we will even_u_l|y arrange to only calculate this one element. We wiU also

examine _o,0, the variance of our posterior estimate.

In order to be more concrete, v_. will have to specify _ a,_d E. Vie can readily

derive _ from the IMA (0,1,1) × (0,1,1)p time-series model. The matrix will have

an especially simple form, which we show below, if we make the simple, but realistic,

assumption that I < p (i.e., we have suf_ciently s_curate data about the load one

period ago). Although we will use this simple case fog illustration, nothing in our

analysis relies on the form of _, so the more general case is susceptible to the same

analysis. Letting _ = 1 - 0, from [11, equations (9.2.11) and (A5.1.3)] we have

1 ,_ A ,_ ...

,_ ,_+ ,_2 1 + 2,_2 ,_ + 2,_¢ -.. ,_+ 2,_2

A A+A _ A+2A 2 1+342 -.. A÷3A =

: : : : ". :
, , o .

A A+,_ A+2A 2 A+3A 2 ... I+(l-1)A 2

The analysis of section 4,2 allows us to de_erm/ne the diagonal entries of _, i.e.,

the variances of the observations of each age from the distributed averaging process,

at least/nterms of the veriauce of the sites' loads. A pr/or_ it appears tha'_ the o_'-

diagonal terms should be zero, i.e. the averaging errors for diEerenz times should be

uncorrelated. Actually; this is a simplification of the actual state of eft'airs, since our

impiemeutation combines together the averaging algorithms for the various times,

and hence they share common sub-trees of preceding e_emeuts. However, we will

proceed with zero terms except on the diagonal, on the assumption that this is not

fundamentally flawed, and with the knowledge that the same general approach could

be applied to a more careful analysis, since once again we ate not exploiting the

structure of the matrix.

If we assume that the perturbations a, in the time-series model of the system-wide

load are the sums ot' independent and identically distribute<l perturbations at each

site, then the loads of the. sites at any particular time are normally distributed

with variance ._. _. This is also, therefore, the variance of an ate-zero (completely

__ m , Ill II I II

CHAPTER 4. MODELING AND ALGOPJTHMS 69

unrefined) average from the distributed averaging algorithm. The _riances of older

averages follow directly from this and the analysis of section 4.2.

As one additional complication, we wilt in general be somewhere in the middle

of an averaging interval. Therefore, we will have some number/¢ >_ I of averages of

each age. If we average those together to get our observed vector x, it will further

decrease the variances by a factor of 1/k. Putting this all together, and letting

= (1 - we get

_-i ... 0 0 0

i ". : : :

o ... o o
0 ...OflO

0 ... 0 0 1

One thing to note amid allthese greek letters is that because both E and _ have

factors of _r2, so will _. This will cancel out against the factor of 1/¢_ in _D-1 when

we calculate £. Therefore, we can continue to not care what or) is, and calculate as

though it were 1. (Of course, the variance 'Zo,o will have a factor of ¢r2, but we are

only interested in its eneoura_ngly small ratio to Eo_ and Eo,o_ for which purpose or2

is also irrelevant.)

How et_ciently can this approach be used? I_ might appear at first that we would

need ®(l s) computation per interval at each processing element, in order to compute

the matrix product E_-*. However, on closer examination the actual figure is ®(/),

which is much more reasonable. The only parameter aft'acting _E -I which isn't

known until run-time is/c. What we can do is precompute _E "l for each possible

value of k. (In principle, k could be as large ss n, but the probability of _his is

vsnlshingly small, so for large _ a much lower upper 5ound could be used in practice;

call this km.¢,) The last row of each of these matrices can then be stored in a km,¢ x 1

table for u_e at runtime. When ze is neede_ at runtime, the dot-product of the k_

row of this table and x - _ is calculated and a_ded to _0. This takes only e(r) time,

as promised.

I I

CHAPTER 4. .%_ODELING AA_) ALGORITHMS 7O

We would like, after all this effort, to have arrived at a substantially better estima-

tor of z0 than either _0 or xo is. (Reca_ that _0 is the estimate derived from the time-

series mode] using only observa¢ions old enough ¢o be assumed accurate, while x0 is

the estimate derived from the averaging algoriohm alone, without use of the time-series

model.) To reassure ourselves on this matter, we calculated represenoative values for

_o,o/_o,_ and _'o,o/_o,o. Taking m = 3 (the optimum), 0 = -0.4 (from our simulation

experiments with ELINT), n = 64 (ditto), I -- 6 (ditto), and k = 1 + r,/2 (for the

most realistic comparison), we get Eo,o/_o,o _ 7.81 and Eo,0/_o,0 _ 3.30. Thus, _,

using the Bayesian inference procedure _o incorporaoe the recent data we have better

th_ a three-fold improvement in ohe quality of our time-series forecast. Conversel._;

by using it to incorporate the time-series model's analysis of historical data, we hope

to achieve more than seven times the precision we could have achieved had we relied

only on curren_ data. For larger n, the recent data isn't as valuable, but still _rth

incorporating: for n = 1024, increasing ! suitably to 9, we get E0,0/_0,0 _. 56.0 and

_o,o/_o_ _ 2.28. As might be expected, the payoff from using historical information

is greater, since the four s_tes knowa about are less representative of the 1024 than

they would be of 64. However, by optimally incorporating the recent data in with the

historical, we still get a further two-and-a-querier rimes improvement in precision.

One final technical ditaoulty that 6hows up in our actual implementation is that

rather then having some constant number k of averages of each age, we may have

a varying number. This arises because any processing element whose housekeeping

processor's load exceeds an emergency threshold stops performing inessential Io_i-

balancing acti_4zies. This has two impacts: firstly, we may on rare occasion have

slightly fewer averages for one or more paat inren,als than for the remainder; secondly,

we may some_,hat more commonly have extra loads for the current interval.

Taking the former complication into account would requ£re a rather expensive

generalization of our inference procedure for an exceptional condition. Therefore,

the implementation correctly averages the reduced number of averages, but then

weigh_e that average-of-averages as if there had been the full complement. The latter

complication--.addit|onal current observations--is not only more common, but also

' II II I I I II

CHAPTER 4. MODELING AND ALGOPJTH.%fS 71

easierto incorporateintothe analysis.Allthat isnecessary,isto followthe above-

describedmultivariateBayesianinferenceby an analogousunivariateone.

4.5 P rtner seeking

Our algorithmintegratesthe findingofa partnerforobjectmigrationwith the above

method of estimatingthe averageload. V_'nena processingsitereceivesone of the

multicastedload messages,itconsidersitas a possibleofferof work, as wellas a

sourceof refiningloadinfixmation.

The receivingsiteestimatesthe currentaverageload,usingthe new information

from the message as wellas allpriorinformation.Itthen compares thatestimateof

the avcragewith both itsown currentload and the loadofthe sendingsite,which is

includedinthe message.Ifthereceivingshe isunderloadedby more thana threshold

amount and the sendingsiteisoverloadedby more than a threshold,the receiving

sitesends back a requestforwork. In the meantime itreservesthe fractionof its

under[oadthat.ithopes to have satisfied,in orderthat itdoesn'trequestwork from

multiplesourcesand have too much arnve.

The multicas_breadthofthreecalculatedabove as optimalforaveragedetermi-

nationisrathernarrow forfindingpartners.Therefore,ifthe sitereceivinga 15_sd

message findsthat the sender'soverloadnot only issufl|cientlylargebut alsoex-

ceedsthe receiver'sunderload(ifany),itmulticastsa requestfor "reinforcements"

to a couple of extrarandomly-chosensites.Of course,itonly sends thisrequest

forreinforcementsifthe residualoverloadexceedsthe appropriatethresholdand the

estimatedaverageload ishighenough to make a su_cientunderloadpossible.

4.6 What to migrate

The experimentationdescribedlaterinthisthesisused a verysimplegreedyheuristic

todeterminewhich objects_omigratetoshifta desiredamount ofload.The heuristic

attempts to minimizeoverhead,ratherthan tryingto respectpriorities.(Chang has

consideredthe latteralternativein [15].He compared algorithmsthatatCempted to

CHAPTER 4, _V£ODELING AND ALGORITHM8 72

maintain a global priorit3" ordering with one that scheduled locally by priority but

transferredjobs ina priority-blindfashion,and found that "Stu'prisingly,[thelatter]

performsv-ellinsupportingpriorityjobs" [I_,p.38])

Those objectsat the overloadedsizewhich have messages awaitingreception,

with the exceptionof the one currentlyexecuting,are orderedby the number of

waitingmessages. The currentlyexecutingobjectisexcluded &ore consideration

becauseitisquiteliterallyexecuting,sincea.separatehousekeepingprocessor(the

operator)isused fortheloadbalancing.The candidateobjectsareconsideredone at

a time,from most messages to least.Ifa,nobjectcan be includedinthoseto be sent

without overshootingthe 1argetload (totalnumber ofmess,_ges),they itisselected

fori.nclusion.This continuesuntileitheralleligibleobjectshave been consideredor

the desiredto_alloadisexactlyachieved.

Thisrendsto resultin a rels,tivelysmallnumber ofobjectsbeingmigratecL,which

reducesthe overhead. Of course,not a21objectswillbe equallylarge.However,

jr,st as the processingtime for a message isnot a _r/or-/known,so too the sizeof

an objec_isnot easilyavailable.This somewhat surprisingf_Lresultsbecause the

instancevariablesof an objectmay have arbitrarygraph-structured,dy'namically.

allocatedvalues.(The Lamina progre.,nminglanguageisnot purelyoLjectoriented;

ital.soMlows dynamicallyallocateds_ructureswi:hineach object'sstate.)In any

case,not allofthe objectmigrationoverheadistiedto the sizeofthe object'sstate;

redirectinginter-objectcommunics:ions isalsocostly,and relatesto the number of

activecommunication partnersthe objecthas.

Even igno_Ig theseissuesand alsotheprioritiesoftheobject,s,itwould be possible

tousefancierselectioncriteriatotrytomore nearlyequalthedesiredamount ofloazL

Hob'ever,thiswo_dd itselfadd overhead at an alreadyoverloadedsite.Therefore,,no

azzempt has been maxleto go beyond the simplebut effectiveg_eedyobjectselection

heuristic.

........ _t l I[I __

CHAPTER 4. .%_ODELEVG A.'_DA£GOPJTH_%f$ 73

4.7 Summary of modeling and algorithmic

contributions

This chapter has laid out the components of our load balancing algorithm. More

importaatly it has shown how explicit models of the randomized information dissem-

ination process and of the evolution of the system's load can be used in the design of

the central load-estimation component of our algorithm.

By using these models, all available information on system-wide loading can be

properly _ombined to yield an accurate estimate of the current load. The model of

the averaging process quantifies the exten_ to which older information is more repre-

sentative of the system as a whole, while the time-serie_ model of the load provides

the statisticalconnectionbetween loadsof variousages,includingin particularthe

currentload. A multivaria_ceBayesian inferencetechniqueisused to combine these

sourcesof infcnnation.

Beyond thiscentralcontributionof the thesis,thischapterhas alsoshown how

the efficiencyofthe randomized distributedaveragingalgorithmcan be optimizedby'

usingthe asymptotic_ualysisof that algorithmto balanceitsprogressper int.erval

againstthecostof the inte_'vals,anotheroriginalresult.

Finally,thischapterhas bri.eflyaddressedtheissu_ofloadmetric(queuelengths),

partnerseeking(inr.egratedwiththeloadinformationmulticasts),and objectseJ.ection

(greedy).

Chapter 5

Implementation Issues

The previous chapter described h_ general outline our proposed algorithm for load

estimation and global load balancing. However, it left open many matters of imple-

mentation det,ail:

• How Rue a time division are the load-balancing intervals?

• What assumptions are, made about clock _jnchronization?

• How large an overload or uuderload warrants corrective action?

• ShouH messages not yet consumable due to sequence-number constraints count

towards load?

• What if an operator is itself too overloaded to keep up with the]oe._l-balancing

overhead?

• What if load-balancing messages are delayed a long rime in transit?

• How are objects encoded into a linear form for migration?

• How is inter.object communications redirected when a recipient.migrates?

This chapter describe_ our experimental implementation of the algorithm in order to

provide one possible _t of answers to these questions. This chapter also deacribes

the cost. model for this (simulated) implementation, i.e,, how long e_ch operatior.

74

_ I .LJ L I

CHAPTER _. L'_fPLEMENTATION ISSUES 75

takes, which provides b_ckground for the performance results in the next chapter.

These two chapters constitute a cue study of how the general load-ba|ancing strate_,

of this thesis can be applied. In order to put the quantitative aspects of this case

study in perspective, including in particular the operation times given in this chapter:

ir is necessary to specify the performance of the simulated CARE multieomputer.

The evaluators are assumed to be 32-bit processors; their performance was crudely

characterized as "10 ;_IPS" in [19]. The operators' performance is such that they

can encode arbitrary pointer-based structures for transmission in 1.6#4 per 32-bit

memory word. Each link in the network is 16 bits wide, and a 16-bit half-word can

be transmitted one hop in 200ns.

5.1 Timer-driven activity

The analysis of section 4.2 allowed us to optimize the performance of the load-

averaging process subject to a fixed limit on its resource consumption. However,

it still remains to decide just how much of the system's resources should be allocated

to this process; this is conl:rolled _, setting the algorithm's time interval.

Experimentation with ELINT prior to _he implementation of our load balancing

algorithm had yielded a rough uuderstanding of the rate at which the s_tem loading

changed (hence how long an interval could be tolerated without sampling the load

too coarsely) and of the amount of excess operator and network capacity (hence how

much extra load the averaging process could sustainably impose). This prior empirical

data was onlya rough startingpoint,becausethe introductionof the load-balsr_cing

algorithmcould change therateat which the system'sloadchanged,forexample.

Some back of the envelope calculationswere done concerningthe relationship

between the intervaland the operatorand network utilizationimposed; forexample,

we show below thatan intervalof2.Sms causesr,he operatorsto spend about 8_ of

theirtime doing loadestimation.Another considerationwas thatitisdesirablethat

the load sampling intervalevenlydividethe periodof the input data,so that each

loadintervalcan be matched to correspondingones inpreviousinputperiods,

CHAPTER _. I.'_fPLE,IIENTATION ISSUES 76

Based on these considerations, we chose 2.bins as the basic load-balancing inter-

val in our implementation. That is, all load estimates are averages for a 2.bins time

interval, end the multic_dng is done et 2.bins inters'sis. Each operator uses a local

interval timer to trigger itself every 2._ms to do a muhicsst. These timers are inten-

tionally not synchronized (in fact, are offset by en initial random delw,), so that the

multicast activity is spread over the entire interval. However, it is assumed that the

operators have clocks that are synchronized to better than 2.5ms accuracy, so that

they can tag lo_! estimates with the interval to which the}" apply.

When an operator's timer goes off, it uses the total number of queued tasks

(messages st objects) as the local load met6c. The cost, model assumes that this is

available without actually traversing the various queues, since it is possible to simply

increment and decrement a counter as tuks are enqueued and dequeued.

One interesting complication arises from the fact that LAMINA objects are al-

lowed to impose a sequence-number control over their incoming m_ssages [21]. Tha_

is, sn object may require that messages T)e tagged by their sender _ith consecu-

tive integers; if a message arrives out of order, processing is delayed until the _arl_or

messages have arrived and been processed. %_en counting queued messages, should

messages in this waiting condition be counted? The actual implementation does count

them, because they normally will be ready for processing very soon, so their inclusion

produces a more realistic estimate of the _ve.ilable load. However, this had tc 'oe

weighed _g_inst certain dangers in making this choice. It is po_ible that the sender

is/ntentionally not generating messages in sequence number order, for example to im-

plicitly 4.o sorting. Also, there is the risk that _m object with only waiting messages

queued could in theory forever "outrun" the rest of ira messages if it were allowed

to migrate, thus causing _t portion of the compu.rsdon to be starved for data. (Had

we made the other choice _d not included out-of-sequence messages in the load, our

algorithm would provably never cause this kind of starvation, since sn object is only

migrated if it has messages queued.) Both of these dangers seem rat.her remote.

In our simulation model, the processing done when the timer goes off normaH.v

I I I I • __ , , , , iii

CHAPTER _. IMPLEMENTATION ISSUES 77

takes 46ps if any information for the current interval has already been received; oth-

erwise an additional 3.Sps is spent initializing the imert'al. This latter is a once-

per-interval cost, like the interval timer and multicasting; in the case where it isn't

incurredwhen the intervaltimer goesoff,itisbecauseithas alreadybeen incurred

when thefirstmessage ofthe intervalwas received.Thereforeitmakes senseto lump

thesetimes togetheras about 50/_sper imervalat each site.This costisactually

computed in the simulationmodel usinga linearfunctionof such variablesas the

muhicast breadthand the number ofloadbalancingintervalsforwhich the estimates

areimproved.Here aselsewhereinthischapterwe aresimplifyingto asingletime by

assuming the parameters as used in the experimentsdescribediRthe next chapter.

Where thereisvariation,thenumbers _ll be based on the normal case,with remarks

about major sourcesofvariation.

Sometimes the operatorisso busy that any unnecessarywork musr be avoided;

thisiswhat the implementation_erms panic mode. In the experimentsdescribedin

thisthesis,the thresholdforpanic mode issettobe an operatorload(queuelength)

of three.The timer-interruptprocessingdescribedabove isonlyslightlydi_erentin

panicmode, becausethe heavy operatorloadislikelycausedby heavy,e_luator load,

and thusitmakes sensetostilladvertiser.helocalloadinhopesofrelief.Therefore,ell

thatisdifferentisthattheloadhistoryisnot updated orincludedinthetransmission

and the costofpreparingfora new intervalisn'tincurred.Instead,the currentlocal

loadisallthatismultic_t to the randomly selectedsites.This amounts toa sa_dngs

ofover15_ largelythe resultofthe transmittedpacketbeingsmaller,sinceinneeds

onlyto includethe one currentloadratherthan alsosixpastloads.

5.2 Summary of message types

Other than r,histimer-interruptservicethattriggersthe muhicasting,allotheractiv-

i_ isdata-driven,triggeredby the arrivalatan operatorofan appropriatelytagged

message.Four dii_erent message typesare used:

Ioad-lnformatlon Thisisthe message multicastedinresponsetothe intervaltimer.

Itcontainsan indicationofthe originatingsite.time sent,that site'sload at

CHAPTER 8. IMPLEMENTATIO,V ISSUES 78

that time, and unless the originator was in panic mode a vector of historical

load estimates. The recipient uses it both as a source of load i_ormation and

as s potential otl'er of work.

work-request The work-request message is sent in reply to a load-information mes-

sage if there appears to be sufficient overload =d underload to warrant migrat-

ing some objects. In addition, a work-request message can be triggered by a

relief-request message from a third party.

relief-request The relief-request message is also sent in response to a load-

information message when the load-information message was sent by an ap-

parently overloaded site. but rather than being targeted to that overloaded site

it is multicast to two randomly selected other sites, asking if they can take some

work from the overloaded site. This is only sent if there is there appears to be a

sufficient excess of overload beyond the local underload and a sufficiently high

average loa_t. The message includes the estimated remaining overloa_i and the

estimated average load.

work-mtgration When _he overloaded site gets a work-request message, it responds

with a 'a,ork-migration message containing the objects chosen to be migrated.

Even if the overloaded (or previously overloaded) site chooses not to send any

objects (for examp|e, because it is no longer overloaded) it sends an empty work-

migration message so as to cancel the undergo/reservation at the recipient site.

This frees _he underioaded site to seek work elsewhere wit]_ou$ fear of receiving

too much.

A t.vpJ.cal scenario showing all of these message _,pes in u_ is i].lustrated in figure 5.1;

the following sections go into more depth on how each message type is processed.

5.3 Load-information processing

If the operator receiving _ load-information message is in panic mode, it simply dis-

cards the message without any processing at all beyond in,qpecting the tag. Otherwise,

I . .

CHAPTER 5. IMPLeMENTATIOn\ _ I$$L'E$

LI Load-Inform_ion

WR Work-Request

P,_ R_lief P.eques_
Work-Mil_ation

II II •

Figure 5.1: Load balancing messages. In this scenario, site A has been triggered b._'its

interval timer. It multicasts a load.information message, choosing sites B, C. and D
as the recipients. 5ire B decides that A is overloaded and B underloaded, so B sends A

a work-request message. However, B is not nearly so underloaded as A is overloaded,
so B also multitasts a relief-request to two sites, chosen to be E and F. Meanwhile, C

generates no me_sages at all in response to the load-information, perhaps because it
is in panic mode, or because with its estimate of the average load A doesn't appear

overloaded. D recognizes A to be overloaded, but is not itself unclerloaded. Therefore,
it sends no world-request but _'ather only a relief-request to G and H. Of the four sites

receiving relief-request n7 _.Mages, only H is underloaded, so it sends a work-request

message to A. A responds to each of the two work-request messages it gets _th a
work-migration message, one to B and one to H.

CHAPTER ,5. L_PLEMEI_TATIO N ISSUES 8O

the load information is merged into the recipient's own load history.

Next, if the packet has been in transit for more than 2.Sins, it is discarded; this

allows a "logjam" of messages to be more quickly cleared, so as not to cause further

congestion. (Because the CARE touters are designed to be simple and fast, the_, can

not discard stale messages in transit; thus this task falls on the receipting operator.)

Otherwise, the message can be interpreted as an o_er of work as well as a source of

load i_ormation. The recipient estimates the system-wide average load, and checks

whether the sender was overloaded by at least, two tasks. (This threshold clearly

needs to be at least one task to ensure stability, since that is the granularity for work

transfer. We chose the more conservative threshold of two to ensure that even in

the face of small variations in the various sites' _timates of the system-wide average

load, there is little risk of Ioa_i being shuffled back and forth repeatedly.)

If the sender was sufficiently overloaded, the recipient checks whether its own

load is below the estimated average by at least two tasks. In doing this, it doesn't

include any underload that is expeaed to be _lled by other sites to which work-

request messages are outstanding. However, these underload reservations expire after

2.Sins if there is no response to the work request. Furthermore, the recipient need not

be underloaded by two tasks if it is complc_e|y idle, so long as the estimated average

load is a.t least one--thus load migration can continue even if the estimated average

loadislessthan two.

Assuming allthese,testsare passed,the recipientoperator now sends a work-

requestmessagetothesitefrom which theload-informationwas received.The amount

ofwork requestedisthe smallerofthe estimazedremote overloadand the estimated

localunderload(asadjustedfor.outstandingwork-requests).This amount isn'tactu-

allyincludedin the work-requestmessage,but itiscalculatedbecausethisamount

of underloadisrecordedas reserved,in casea similarload-informationm_msage is

receivedbeforethe work-migration.

The work-reque_ includesthe requestingsiteand itsestimatedadjustedunder-

load,a reservationidnumber for_he underloadre_serva_ion,the estimatedaverage

load(so the overloadedsitecan re-assessitsoverloadwithout re-estimatingthe av-

erageload)and the currenttime (sooldwork-requestscan be igr_ored).The specific

• i iii __ I I _ I II I II II I' " _' ".........

I I I

CHAPTER _. II_PLE.VIE._'TATION ISSUES 8t

amount ofwork to transferisn'tincluded,becausethe othersitemay inthe meantime

have successfullytransferredwork elsewhere.

Ifthe estimatedremote over.oadexceedsthe adjustedestimatedlocalunderload

by at leastts'otasksand the estimatedaverageload isat leastone,then a relief-

requestmessage isalsomulticasttotwo randomly-chosensites.This message contains

the estimatedremainingoverload,the estimatedaverageload,the time, and the

overloadedsiteto which an)"work-requestshouldbe directed.

The _otaltime forthisprocessingcan range from about 50ps ifthe remote site

doesn'tappear overloadedup to 85/_sifthe work-requestand relief-requestboth

provene(_ssary.Thus, even ifno work-requestsorrelief-requestseverget generated

(and hence no work-migrations),thecombined costofthe timerprocessingand load-

informationprocessingamounts to roughly8_ of the totaloperatortime,because

(50_ + 3 x 50;_s)/2.Sms- .08.

5.4 Relief-request processing

The processingof relief-requestmessages issimpler.As with load-information,the

message isimmediatelydiscardedifthe operatorisinpanic mode or ifthe message

isolderthan 2.Srns.The e_timatedaverageloadcontainedin the message isused

to calculatethe estimatedlocalunderload,adjustingforoutstandingwork requests

(i.e.,underlosdreservationsnot olderthan 2.Sins).Ifthisunderloadisat leasttwo,

or altetmativelythe localevaluatoriscompletelyidle,the_ a work-requestissentand

an underloadreservationrecorded.The amount ofwork reservediscalculatedasthe

smalleroftheestimatedlocalunderloadand theestimatedremainingremoteoverload

(i.e.,the overloadminus any work requestedby siteoriginatingthe relief-request).

The work-requestgoesdirectlyto the overloadedsite,ratherthan to the sitefrom

which the relief-requestwas received.Because no averageestimationisrequired,this

processisrelativelycheap;ifa work-requestisgenerated,it"cakesabout 30/_s_ifnot,

lesszha.,t20_s.

CHAPTER 5. IMPLEME_TTATION ISSUES 82

5.5 Work-request processing

The work-request messageisn't ignored in pa'_ic mode, because the panicking site may

be able to get out of panic mode precisely by ofl]oading objects. (Recall that after

redirection has occurred, the communications as well as computation associated with

the migrated objects wiU be gone.) However, work-request messages that have been

in transit for more that 2,5n_ are still ignored, because it could lead to dangerous

oscillations if work were migrated based on stale information.

The work-request message contains the average load as estimated by the request-

ing site. This is impo_ant not only because the overloaded site shouldn't have to

waste precious resources estimating the average, but also because it may not have

the information on the basis of which to estimate the average if it has been in panic

mode.

The site receiving the work-request message calculates its overload using the esti-

mated average load from the message and compares it with the estimated underload

of the other site, also taken from the message. Whichever of these two is smaller

serves as the target number of tasks to transfer. The greedy policy described in sec-

tion 4.6 is used to select specific objects _o mi._rate so as to transfer at most that

many tasks. Those objects are the_ sent together with the reservation id number

from the work-request in a work-migration message targeted to the site from which

the work-request came.

Except for the case where the message is ignored, the minimum processing time

is when the site is no longer overloaded and hence doesn't need to select or transmit

objects. In this case: the processing ta_.es 35ps. The extra cost above this varies

substantiall); depending on the number of objects, how man)" of them are selected

for transmission, sad how much state those objects contain. The final encoding of

object states for transmission is accounted for at 1.6/_s per 32-bit word, (If that seems

high: recall that the object states involve arbitrary pointer-based structures, and t_at

this is in che context of a IOMIPS processor.) The experimental results on migration

delayspref,enzed iasection6.8includesthesetimesas wellas actualcommunication

tim,*..

CHAPTER 5. IA,fPLEMENTATION ISSUES 83

The process of actually encoding the objects for migration is rather dit_cu_t be-

cause the LAMINA]anguage is not purely object oriented. Thus the instance vari-

ables may contain not only references to other objects and scalar quantities but also

references to general records and arrays which may form an arbitrary directed graph

structure. Therefore, what is needed is a graph-traversal algorithm that can tolerate

cycles and can efficiently produce an encoding that reflects any structure sharing.

Luckily the LAI_NA/CARE system already provides operator facilities for passing

general directed graph structures by copying [54], so only a few superficial modifics-

tions were necessary to accommodate migrating entire process states.

5.6 Work-migration processing

Not surprisingly, work-migration messages are _he one type of load-balancing mes-

sage that is never ignored. The receiving operator removes the indicated u_derload

reservation if it hasn't already expired, decodes each arriving object (turning rela-

tive addresses into absolute pointers, for example), initiates the process of redirecting

_ommunications to each arriving object, and installs each object in the evalua_or's

queue of runnable processes. The bare minimum time for processing this type of

message is ll#s, if there are no objects in the message and the reservation id is found

inunediately at _he head of the list of reservations. Decoding objects _akes 1.6_s per

32-bit word, creating a process takes 15_, and redirecting communications takes a

minimum of 16ps for the initial message sent (more work ensues later a_ a variety

of operators, including the originating one). The following section explains how the

redirection of communications is hand|ed, which is _he most complex aspect of the

process.

5.7 Communication redirection

All communications between objects in LAMINA is mediated by explicit s_reams

managed by the operators. There are provisions for forwarding one stream to an-

other, and for updating upstream s_re_:ms to point directly at new streams added

CHAPTER 5. IMPLEMENTATION ISSUES 84

further dc_,nstream [21]. These facilities needed only slight extension to facilitate ob-

ject migration. Objects now have local outgoing streams forwarded to the receiving

objects' incoming streams. When an operator receives a migrated object, it creates

a new incoming stream for the object and requests that the sending operator for-

ward the old incoming stream to the new one. Tkis causes any waiting messages to

be immediately dispatched to the new location and also leaves a forwarding address

for any messages that arrive thereafter. (This is for the primary incoming s_ream

of the object; the object may have additional incoming streams, which are similarly

forwardedlateriftheobjectwaitson them.) The firstmessage senttothe migrated

objectby any otherobjectwillbe forwardedfrom the outgoingstream ofthe sender

to the old incoming stream at the former locationand from thereto the incoming

stream at the new location.Wb.en thishappens, a message is_%vnchronouslysentto

the originatingoutgoingstream changing ittoforwarddirectlyto the new"incoming

stream; ifthe originalmessage had to take a multi-hopforwardingpath, the inter-

mediate streams are alsosimilarlyupdated. In earlyexperimentswe immedial;ely

ssynchronouslyupdated allof the outgoingsweams btttthisprovedto be quiteex-

pensive,as thereare oftenmany potentialsenders,few ofwhich willactuallysend in

the nero"term. Moreover,maintainingand migratingtheback-pointersto the senders

was itselfvery costly.On the other hand, the currentpolicyof only upda1:ingad-

dresseswhen they are used. increases the risk of longer forwarding chains, particu/arly

ifthe migrationrateishigh.Preliminary"experimentationwithELINT demonstrated

a net gainfrom switchingto the currentpolicy,but we don'_presentshy quantitative

resultsto substantiatethis,sincecommunications redirectionwas not the primary

focusofthisdissertation.Othershave studiedthisissuemore carefully;inparticular,

Fowler [28] inhisexaminationforwardingaddresspoliciesprovides_symptoticamor-

tizedanalysisforpath compressiontechniquessuch as we choseto use.His s_nalysis

confirnmthatour choiceofpath compressionisreasonable,by showing tha_the total

number of messages requiredform migrations,a message deliveries(witha,> m),

and N processorsisasymptoticldlybounded by a + 3alogi+a/mN.

CHAPTER 5, IMPLEMENTATION ISSUES 85

5.8 Summary of implementation issues

This chapter, by providing a case-study description of our experimental implemen-

tation of the load-balancing algorithm, has served two purposes: it has provided

concrete examples of decisions made in the course of putting the general approach

into practice, and it has described the experimental context in which the results of

the next chapter were obtained.

The implementation uses an interval timer at each site, all with a common period

but with randomized phases, to initiate load information dissemination. The load

information messages can also serve as o_ers of work, and as such can cause work

request and thus work migration messages to be sent and processed. A "relief re-

quest" message type is also employed when it is appropriate to search for additional

uaderloaded sites to come to the aid of a pm'ticularly overloaded site.

W'e've shown the operator processing costs associated with all these actions in our

implementation; given these costs, our choice of a 2.Sins tr_terval corresponds to a

decision to devote about 8_ of the operators' time zo load estimation. We've also

described the "panic mode" and timeout mechanisms used to respond to operator

overload or network congestion in _ stabilizing negative-feedback manner. Finally,

we've sketched how the pre-existing mechanisms of the CARE implementation of

LAMINA are used to providerelocationof objectstatesand redirectionofcomm_-_

nication.

I II i,_' t fir,/ ..'(.l'Ji Ifi t _A14

Chapter 6

Performance Results

There areseveralinherentlyempiricalquestionsraisedby theloadbalancingmethod-

ology proposedin thisdi,"_r_ation:

s Can the loadinginrealsystemsbe adequatelymodeled?

Are theestimatesofthe _'stem-wideaverage]oadgeneratedthrough time-series

forecastingand Bayesianinferenceactuallysuperiorto thoseachievedwithout

one or both ofthosetechniques?

t Do thoseimproved estimatesallowthe loadto bs bManced with fewerobject

migrationsand _ith fewerobjectsbeingrepeatedlymigrated?

s What isthe netchange inore,head costsassociatedwith mo_ _complicatedload

estimationbut lessfrequentobjectmigration?

• What impact does the frequencyof objectmigrationshave on applicationper-

fon_ance?

How longdoes ittake iomigratean object?To negotiatea migration? Given

these,shouldthe time-seriesmodel be used to forecastfutureload,ratherthan

estimatecurrentload?

How does the initialobjectplacement strategy'interactwith the objectmigra-

tionstrategy?

S6

CHAPTER 6. PERFOR_ANCE RESULTS 87

• Hov, do applicationsfaxethathave staticgridsofobjectscommunicating with

theirneighbors?

• What impact do such factorsu the relativecostofmigrationand the overall

system loadinghave on the conclusions?

• Finally,puttingallofthe above together,under what circumstancesisnet ap-

plicationperformanceimproved _, usingthe methodology ofthisdimertazion?

The firstquestion,whether actualsystems'loadscan be successfullymodeled,was

answered affirmativelyin section4.3,at lea,stforELINT and AIRTRAC-DA. This

chapteranswers the rems.iningquestionsusingexperimentalevidencefrom sirnul_-

rich.This experimental.ioncomplements the me deling_d algorithmiccontributions

presentedearlier,and isitselfa major contributionofthe thesis.The experiments

compare our proposed load-balancingmethod with severalalternatives,describedin

the firstsection.

The net impact on applicationperformanceisthe uhimate measure ofsuc:ess;so

as not to keep the readerinsuspenseany longer,immediatelyafterlistingthe alter-

nativemethods we willexs_rninedata concerningthe application-levelperformance

of ELINT. Having done so,we can then look more closelyat the ELINT runs for

such particularsas the qualityof load estimatesor the performanceimpact of mi-

grationfrequency,with an eye toexplainingthe application-levelperformanceeffects

we have observed.Finally,we willintroducea syntheticapplicationof zhe highly

regularnearest-neighborsorttoseehow itfaresunder variouscombinationsofobject

placement aad objectmigrationstrategies.All theseresultsare from experiments

with a t;4-siteconfigurationof CARE.

6.1 Alternative Ioad-balanclng policies used for

comparison

The ELINT experimentscompare fourdifferentmigrationpolicies,allusingrandom

initialplacement of the objects.In additionto thesefour,_he ELINT comparisons

CHAPTER 6. PERFORMA,'_CE RESULTS 88

Mso include a more sophisticated deterministic placement strategy without any mi-

grations.The synthetic-loadexperimentsdescribedin section6.10use a somewhat

differentmix ofplacement and migrationstrategies,which willbe describedin that

section.

The fourmigrationpoliciesused in combinationwith random placement are as

follows:

The globalload-balancingscheme proposed inthisthesisusestime-seriesanal-

ysisand Bayesianinferenceto estimateZhe system-wileaverageload.Load is

transferredbetween two sitesifeachdiffersfrom the estimatedaverageby more

thana thresholdamount (inoppositedirections);asa specialcase,a completely

idlesireisalwayseligibletoreceivework, even ifthe estimatedaverageisless

than the thresholdamount. The amount of loadtransferredisthe smallerof

the differencesfrom the estimatedaverage.This willbe calledthe "Bayesian"

scheme inthe comparisons.

A sintplifiedversionofthesame globalload-balancingpolicyusesonlyloaddata

from the current time interval to estimate the average load, rather than using

the techniquesof thisthesisto incorporateany historicaldata. This willbe

referredto as the "recentinformation"scheme.

A yet simplerloadbalancingscheme usesonlythe currentloadsofthe prospec-

tivedo'-_orand recipientsites,ratherthan any estimateat allof system-wide

loading. Objects are migrated ifthe differencebetween the t_'osites'loads

exceeds_ thresholdequaltothe sum ofthe underloadand overloadthresholds

in the othermigrationstrategies.The amount of loadtransferredishalfthe

differenceinload ofthe two sites.This isa "local"load balancingscheme in

the broad sense thatthe migrationsserveto locallybalancethe loadsof the

two sitesinquestion,ratherthan being calculatedto bringone or both ofthe_

tothe system-wideaverage,thuscon_ributih, globalloadbalance.Howevex,

the same non-localrandomized communication patternasinthe otherschemes

isstillused:so thetwo siteslocallybalancingtheirloadsneed not be nearby to

one another. This scheme will be referred to as the "averageless" schsme.

-- I ___] ILl l

CHAPTER 6. PERFORMA._'CE RESULTS 89

• Finally,a versionthat does no load estimationor objectmib:ationat _, is

included, which will be referred to as the "random static" scheme. The obj_ "_

are simply left where initially randomly placed.

In _ddition to these four options for deciding when (if at all) to migrate the

randomly placed objects, the ELI_'T experiments include another load balancing

policy which deterministically places the objects and also does no migrations. This

is a policy that was designed by Saraiya in the course of his earlier experiments with

ELINT [54]. In this policy, the sites are partitioned into separate regions for the

various classes of o_ ,eta. Ssraiya chose the relative size and positions of the regions

so as to produce both good load balance and low-congestion communications patterns.

In the following comparisons, we will call this the "class-based static" scheme.

6.2 Application latencies

For a soft-real-time surveillance application such _s ELINT, the appropriate perfor-

mance measureisnotzhroughr_utbut ratherlatency/,i.e.the delaybetween thearrival

ofsensorydataand ¢heoutput of_he correspondingreport.Further,itdoesn'tsuf_ce

to measure the averagelatency,sincewhat isdesiredisconsistentlylow latenciesfor

alloutput reports.These experimentsused the two most common kinds of output

reportsgeneratedby ELINT: the fix(i.e.position)and headingof indiv_duM"emit-

tars,"which are sourcesofradiofrequencyemissions,such as missileguidanceradars

an.didentify-friend-or-foedevices.

Allexperimentswere done with a fixedinputfileofsimulatedobservationinputs.

The inputswerescheduledto arriveinperiodicbursts.The intervalbetween bursts--

the "dataperiod"--washeldconstantovereach simulationrun. Two differentdata

periodswere used,each foran entiregroup of runs,in orderto show the impact of

the overallloadlevel.Figure{3.1shows the number of input observationsead_ data

periodinthe inputfileused fortheseexperiments.

Because the latenciesdepend not onlyon the objectmigrationmethod, but _tlso

on the |_itialobjectplacement,we took careto use a varietyof initialplacements

and to use thatsame a_sortmen_of placementsfore.achofthe migrationmethods.

CHAPTER 6. PEBIOP_I_ANCE RESULTS 90

2o

o

Tim_(data_dods)

Figure 6.1: Input da.ta. This graph show's the number of input observations each data

period in the data file used for the ELINT experiments.

CHAPTER 6. PERFOR2_ANCE RESULTS 91

As noted above, except for the one policy which combines deterministic phcement

with no migration, the alternatives being compared all used random initial placement.

Therefore, the desired variety of initial placements was achieved by doing seven runs

with each load balancing strategy, using different seeding of the pseudo-random num-

ber generator--thesame sevenseedingswith each competitor.As a sideei_ect,what

was variedin thiscontrolledmanner was not only the initialobjectplacement,but

alsothe particularpseudo-random sequenceused forrandomized communication of

loadinformation.This helpsinsurethatthe comparisonsare not unduly influenced

by particularlyfortuitouspseudo-random sequences.For theone de_erminis_i:policy

(Saraiya'sclass-basedstaticplacement),onlya singlerun was necessary.

We measured thefractionofemit'_erfixand headinglatencieswhich exceededeach

ofa range ofthresholdsand plottedthismissrateagainstthe threshold,measured in

multiplesofthe dataperiod.This isessentiallythesame as a cumulativedistribution

functionforthe latencies,and allowseasy.visualcomparison of our loadbalancing

method with alternatives.These miss ratesforthe caseof a 15ms data periodare

plottedinfigure6.2.The missratesshown are averagesm'erthe sevenruns foreach

method (exceptthe class-basedone).

It'squiteevidentthatdyDamic migrationsubstantiallyimprovesthe system per-

formance.The threedynanLicschemes clusterquitecloselytogether;ifone looksvery

closely,the apparentorderamongst them isthatthe averagelessscheme isworst,the

recentinformationscheme best,and our own Bayesianscheme in between. The dif-

ferenceamong them isso small,however,as tobringthisorderingintoquestion.We

show below thatitisof marginalstatisticalsignificance;however,evenifsignificant

in the statistical sense, it is of no practicat signiticaace.

It is interesting to notice that the class-based static scheme actually performs

substantially worse tkan random static placement of objects. Yet Saraiya carefully

hand optimized the placement of the various object classes so as to achieve both good

load balance and low-congestion communications patterns. How then is it bested

by rs_adom allocati.on? The key is that Saraiy- did all his work in the contex_ of

_o_her single input _le, and tuned his performance around the characteristics of

that scenario. It turns out that this plscement was brittle--that what worked very

CHAPTER 6. P£RFORMANCE RESULTS 92

J

|.0 -

0.8 "

0.6

0.4

0._ "

O_

Comparison of load balancing schemes

---e-- elf.+_.,..,,,,st,,c

-_, _. I"" _<'" ra_ s_c .

I.'2 1.4 1.6 1.8 2.0

De.dli_ (dataperiods)

Figure6.2: Compsrison ofloadbalancingschemes. _nis graph shows the fractionof

erni¢_¢rfixsnd heading reportsmissingeach ofa range of deadlines,shown on the

=-axisin unitsoi'the data period,here15ms.

i __ __ llIII I

CHAPTER 6. PERFOR.VA._CE R,ESL_LTS 93

wellforone scenarioworks quitepoorlyunder a differentscenario.Thishelpsexplain

our focuson simpleadaptive,dynamic, randomized algorithms--althoughthey are

unlikelyto be optimal in any particularsituation_they are equallyunlikelyto be

pessimalinanother(unanticipated)situation.

6.2.1 Increased migration cost

Although thethreedynamic load-balancingschemesexhibitcomparable performance

under theseconditions,theremay be importantdi_erencesamong them. In fact,the

more detailedevidencepresentedbelow shows thatthisthree-waytieisactuallya

coincidence:the d_-namicschemes succeedto varyingdegreesinbalancingthe load,

but alsoexact greatlyvaryingmigrationcostsand load estimationcosts,and these

effects--particularlythe lattertwo--happen to roughlycancelout.

Therefore,itisinterestingto seewhat would happen ifthe relativecostofmigra-

tion__'aschanged,forexample by inflatingthe sizeofthe processstatesby a factor

offive.This _rves to illustratethe sensitivityof the analysisto architectural_ri-

ationsa_ectingrelativespeedsof processingand migration,as wellasto variations

among applicationsinthe ratioofobjectsizeand method complexity.As a guideline

for comparing our two experimentalsituationswith other systems,R ishelpfulto

know thatdata laterin thischaptershows thatthe uninflatedprocesssizesresultin

migrationtimesapproximatelyequal tothe method,executiontimes.

Ifwe do thisexperiment,we ge_the resultsshown in flg_re6.3.This graph was

constructedinthe same manner, againus._ngsevenrunsfrom eachscheme excep_the

class-basedone. (The staticscheme- are o_courseunaffectedby hie sizeof process

ates, sincethey do not need to migra= them.) Here the differencesbetween the

va.qousschemes'performances,_remore substantial,and the scheme proposedinthis

thesisshows the bestperformance,

Another point worth notingin _hisgraph isthat itisambiguous whether the

migrationsdone by the averagelesssche,meare hurtingperformanceas much asthey

arehelpingit.For.shor_deadlines,the missrateisworse than with themigrationless

_andom staticscheme, though forlongerdeadlinesthe miss rateisloweredby the

migrations.Because the averagelessscheme has the]ooseststandardsforwhen to

CHAPTER 6. PERFORMANCE RESULTS 94

0.5

0.4

0.2

0

1.0

The ¢ffe_ _>fincreasing the process star, size

'.. " I'- _<-" r_om ,ratio
\'.,. s.... • av_rqea_s

'..

. ',,. ..'..7 .we,....

'0. _... "°'dk

"" _'.'_".:.:..___ " 14

•" .g.'7"--.

, , , __'-'-_-.--._
1.2 1.4 t.6 1.e 2.0

De,sdlim (dataperiods)

Figure 6.3: The effect of increasing the process state size. This graph agai.u shows

the fraction of emitter fix and heading reports missing each of a range of deadline,,

shown on the horizontal axis in multiples of the 15ms data period. This time the

process state size is five time, larger.

CHAPTER 6. PERFORMANCE RESULTS 95

migrate objects, it winds up doing the most migrations, as we'll see below; this

results in the scarci_, of short |atencies. However, it still beats the random static

scheme at high thresholds, because that latter scheme suffers a flattening out of i_s

miss rate curve due to bottlenecks at overloaded sites. (Those reports which require

processing on the overloaded sites are subject to extremely long latencies.)

6.2.2 Statistical significance

Even though the miss rate cur_'es are now clearly distinguishable, it is worth testing

whether those differences are statist£cally significaut, l_ecall that the miss race curves

reflect averages; because the actual latencies vary', subst.antially_ the lines should be

thought of as rather broad. Are they so broad as to render our scheme's apparent

superiority insignificant?

Suppose the recent information scheme actually was identical in performance to

our scheme; this is ou_rn,_l h_o@,esig, which we will test in hopes of refuting i_. In

that case, which of these two migration schemes is used shouldn't make any difference

in the latencies of the output reports. However, the latencies m_' none the less vary

considexably depending on the initial object placements, independent of the migration

scheme. Flu'thor, some input observations may be responded to more slowly than

others, independent of the migration scheme. Therefore, a _ired test is called for,

which matches each output latent" observed using one migration scheme wi:h _he

corresponding output latency from the other scheme. The corresponding latency is

the one for the same input observation and using _e same initial object placement.

If we pair up the observed output lstencies in ___ way, in some pairs one latency

will be larger, while in others it will be the other way around. If there is a surprb_ing

degreeof asymmet_, one unlikelytc be due to chance,then the nullhypothesis

can be rejectedin favorof the alternalivethat the two migrationschemes di_erin

performance.

One way to examine thisvisuallyisusinga histogramofthe pairdiJ_erences.It

isdiflcultto see the asymmetry,in thishistogram,presentednormally.However, if

we eliminate the central bar (reports where th; two methods had nearly identical

latencies--somewhatovera thirdof_he totalreports)and foldthe remainderofthe

CHAPTER 6. PERFORMANCE P,.ESULTS 96

0.12

0.1

0.02

Figure 6.4: Folded latency diference histogram. This shows the distribution of difer-

ences between latencies using the proposed Bayesian scheme and the corresponding
latencies truing the recent-information scheme with the same placement and for the

same observation. This figure excludes the reports where the latencies di_ered by

lessthan .05data periods,and placesthe positiveand negativelatencydifferences

ofeach magnitude sideby side.This fig'areisfrom the experimentswith 15nasclsts

periodend the £ve times largermigrationcost.

histogramin half,_.otha_correspondingbarsfrom the positiveand negativesidesare

adjacent,as itl]gare6.4,,then the asymmetry isquiteclear.There isa substantial

excessof caseswhere the recent-informationscheme was slower.Although forsome

individualrepots the Baye.sianscheme proposed in thisthesiswas slower,itwouM

be remarkableifthishappened so infrequentlyby chancealone.

The probabilitythatthisasymmetricaldistributionwould infactresultby chance

can be quantified,producing a signi_cancelevelat which the nullhypothesisisre-

jected.More precisely,we arecomputing the probabilityof a distributionthisasym-

metricalormore so.There areseveralways thiscan be done. One popular approach

• I

CHAPTER 6. PERFORMANCE RESULTS 97

would be to assume that the latencies are approximately normally distributed and use

a paired _ zest, Doing so, we find the difference bet_'een "_he load balancing methods

is very significant; we reject the null hypothesis ar a significance level well below 10 -4.

(That is, the probability that we'd see such a large apparent difference when there in

fact was none is much less than 10-s.)

However, perhaps the assumption of normality is lm._ustified; the t test may be

assigning undue weight to the handful of reports for which the latencies differed

greatly, i.e. to the tails of the histogram shown in the figures. (The tails are actually

longer end thinner than. shown in those figures, since the range was truncated for the

sake of clari'cy; the maximum latency difference between the w'o schemes is actually,

2.9 data periods.)

In order to deal w-it.h these doubts, a "robust," t.est is called for. One likely can-

didate is Wilcoxon's paired signed rank test. This involves sorting the latency dif-

ferences into order by thei, _ absolute values, and then adding up the positions in this

ordering (i.e. the ranks), with the same signs as the differences. That is, we take the

sum of the positions occupied by positi_,e differences minus the sum of the positions

occupied by negative differences. This weights larger differences more heavily then

small ones, but only slightly so out on the tails of the distribution. Moreover, the null

distribution of this s_atistic (i.e. the distribution assuming the null hypothesis holds)

is precisely, known without needing any Bssumption of normality, on purely combina-

torial grounds. The sign attached to each rank would essentially be determined by a

coin flip if the null h.vporhesis held. Thus the significance level can be assessed with

no assumption about the distribution of latencies. Using this test, the significance

level turns out somewhat higher than with _he _ test, but still cons/derably less then

10-5. In other words, there is no doubt that the scheme proposed in this thesis does

actually outperform the recent-information scheme when the larger migration cost is

used.

Going beck to the case where the smaller migration cost is used, it is important to

note that. the absolute performance differences between the three dynamic schemes are

so slight as T,orender the question of their statistical "significance" purely academic.

The same techniq_es as described above can be used to argue that the very subtle

CHAPTER 6. PERFOR._vIA_TCE RESULTS 98

obsen'ed differences between these three schemes are probably reflections of a genuine

performance ordering, with our Bayesian scheme intermediate between the other two

under these circumstances. However, there is little point in making this case, since

the difference is in any case of no consequence.

6,2.3 Increased system loading

To show the impact of increased system loading, figure 6.5 indicates the result of

speeding the input data l_eriod up from 15 milliseconds to 12.5 milliseconds while

retaining the larger process size; the performance of the Bayesian scheme is still

superior, and as should be clear from figure 6.6 this difference is quite significant.

6.3 Load estimation errors

Sincea major contributionofthisthesisisthe methodology forusingexplicitmodels

ofthe time evolutionof load and of the informationspreadir j>rocessto improve

system-wideloadestimation,itiscriticaltoconfirmthatthiseffortactuallyproduces

improved load estimates, h_ particular,we willsee that even where our scheme

performs worse,itsunderlyingload estimatesare stillsuperior.(Regrettabl);good

estimates do not automatically ensuregood performance.)

Ratherthan do lotsofrunswith variouspseudo-random number generatorseedsin

orderto tryto statisticallyseethrough the inconsequentialdi_erencesbetween runs

done with di_erentload-estimationprocedures,we have compared data alllogged

from a singlerun.This run employed our load-estimationand load-balancingscheme,

but ai_ Loggedthe load estimatesthat would have been obtained using only the

currentinfol_ation,and alsothosethat would l_avebeen obtained usingonly the

informationold enough that the averagerefinementprocesshad been terminated.

This latteroptionusesthe time-seriesmodel but without the Bayesian inferenceto

incorporaterecentbut unreliableinformation.(The excludedinformationwas most

of the informationlessthan one periodin age.)The run in questionwas done with

the 15ms data rate.and the smallerprocessstatesize.

CHAPTER 6. PERFOR._ANCE RESULTS 99

Th_ effect of increasing the system loading

0.8- '\'"

_ %'..

0.6 ,, '..

_, "A

0.4

---.e.-- clus.ba_l s_ui¢
- - _(- - r1_lom sga_c
.... ,_.... averagel_s
--o'V--- tP,_l_

-.._. - _y_l_

0.2

"°'•..•.

"°,• _,,
"..°

'_,_ "X-.,,,

•_,._..,,.,."i.4

i I •01.0 I.'2 '
1.4 1.6 1.8 2.0

Deadline.(dalaperiods)

Fig,_re 6.5: The effect of increasing the syszem loadin_;. This graph again shows the

fraction of emitter fix and heading reports missing each of s. range of deadlines, shown
on the horizontal axis in multiples of t,he data period, which is nov,- only 12.5ms. The
larger process state sizes are still being used.

CIfAPTER 6. PERFOR:_ANCE RESULTS 100

0.]2

O.l

0.08

0.06

_ 0.t14

O.g2

0

Figure 6.6: High-load latency differences. The Bayesian scheme proposed in this thesis

significantly outperforms the recent informatio_ scheme under high-load expensive-
migrstion conditions.

___.a

CHAPTER 6. PERFORMANCE RESULTS 101

The variance of the load estimates around the actual average load was 1.57 for

our scheme, 4.64 using only old information, and 3.82 using only current information.

Thus both our use of a time-series model to incorporate old information into the

estimate and our use of Bayesian inference to also employ recent information are

validated. The ratio of the variance using only current information to that with our

scheme is about 2.44, rather less than the value of 7.81 r _ calculated on theoretical

grounds in sectio,. _.4. On the other hand, the ratio of the variance with only old

information to that with our scheme is 2,97, closer to the 3.30 we derived theoretically.

h is unclear what accounts for these discrepancies between theory and practice;

there are enough approximations and simplified models involved in the analysis that

there are numerous possible origins for the error. One prime suspect is the fact

that the actual implementation of the distributed averaging algorithm results in cor-

relations between the estimation errors for the various time intervals that _re not.

accounted for in our simplified model, as remarked in section 4.4.2. Another lik-,ly

suspect is the fact that the set_ml site loads are not normally distributed about the

system-wide average, and in fact are not even particularly symmetrically distributed,

becausethe averageloadislow enough thatthe factthatno sitecan _ave a negative

loadresultsina substantialsnubbing off'ofthe distributionin one direction.

6.4 Migration frequency

The primarymotivationforproducingaccurateestimatesofthe system-wideaverage

loadand usingthattodo globalloadbalancingisthatgood loadbalanceshouldbe

achievablewith many fewerobjectmigrationsthan would be necessarywith local

load balancing.This isbecause only objectson overloadedsiteswillbe migrated,

and onlyto underloadedsites.The averageless(local)scheme willincontrastalso

n_igrateobjectsfrom underloaded sitesto yet furtherunderloaded site_,and will

migrateobjectsfrom overloadedsitesto lessoverloadedsites,_,.n though they will

then typicallybe migrated again.Thus itisclearthatthe averagelemscheme has a

weakerstandardforwhen to migratean object--itonlyhas to finda lessloadedsite.

not one on the oppositesideofthe system.wideaverage.

CHAPTER 6. PERFORMANCE RESULTS 102

The comparison with the recent-information scheme is less clear, That scheme is

also t_,ing to do global load balancing, but using s_ inferior estimate of the system.

wide average load, derived only from recent information from a few sites. If this load

estimate were worse in an unbiMed fashion, it would appear to result in yet fewer

migrations, since it is harder to find sites on opposite sides of an arbitrary dividing line

than it is to find sites on opposite sides of the actual average, assuming a relmively

symmetrical distribution of loads. However, this assumption of unbiasednem is faulty;

among the few sites' loads averaged into the recent-information estimate are the two

being compared with that estimate. Therefore, since there are only a few others

included, the estimated average is quite likely to fall between the two sites' loads

being compared. Thus, we can expect the recent-information sc3eme to also do more

migratio_ than the proposed Bayesian inference time-series analysis based scheme.

This _ection presents the empirical evidence supporting these conjectures about

migration frequency; the new section ex_inm further she claim that our scheme's

more sparing use of migration isn't at the expense of the quality of load balancing.

The two sections following that examine the important benefits derived from the

reduced number ofmigrations.

Figure6.7 shows the distributionof how many times each processmigratesfor

the three dynamic schemes. All three histogramsare aggregatedover seven runs

witltdifferentpseudo-random seeds,and Ml are in the base case,i.e.the data rate

is15 milliseconds,and the processsizesare the original,smallerones. As can be

seenfrom the figure,the Bayesiantime-seriesanalysisbased scheme _endsto migrate

each objectfewer times than the averagelessscheme, with the recent-information

scheme fallingin between. Specifically,the averageobjectmigrates1.00times with

the scheme presentedin thisthesis,1.29times _ith the recent-informationscheme,

and 1.73times with the averagelessscheme. This translatesintocorrespondingly

dramatic differencesin the number ofobjectsrepeatedlymigrated: the number of

objectsmigrated more than once is60% higher_dth the averagelessmethod than

with the Bayesian one.

The threecurvesinthisfigureareallfitextremelywellby a geometricprobability

distributionmodel, with only the singleparameter of that model varyingbetween

CHAPTER 6. PERFOR_,fANCF, I'_SETLTS Z03

,woo

2oo0

1ooo

o

. .J . . __m . _ . t _ •

\ bl_sjm
t o_ooeol.

• L

0 5]0 15 " "

MiSr_i0_lt

Figure ft.7: Mi_ation frequenc)'. This graph shows on the y-axis how many ob._ects

migrated the number cf times corre_pondlng on the x-s.xis.

CHAPTER 6. Pi;RFOR._fANCE RESULTS 104

them. What thismeans isthatthereisineach casean essentiallyfixedprobability

thaza givenobjectlocatedon a givensitewillmigrateoffthatsite.All thatvariesis

thisR_cedprobability;fortheaveragelessscheme,itis63%, fortherecent-information

scheme itis56_, and forour proposed scheme only 50%. This fitswellwith the

remarks at the beginningof thissectioncomparing the threeschemes' migration

criteria.For example, migrationscan occur inthe averagelessscheme whenever two

sitesdifferinload,whileforour scheme thesitesmust alsolieon opp_ite sidesofthe

system.wideaverageload.Sincethisisa more restrictivecriterioR,itisn'tsurprising

thatthe probabilityan objectwiU migrateoffa siteislower.

6.5 Load balance

Having seen that ourload balancingmethod does indeeduse migrationsmore spar-

ingly,itremains to show that they are sufficientlystrategicallychosen as to still

adequatelybalancethe load.As can be seen infigure_.8,althoughour scheme does

not beat the otherdynamic migrationschemes at loadbalancing,the resultingload

balanceisstillcomparable (and much betterthan withoutmigration).The veryfact

thattheloadbalanceisn'¢better(infact,isslightlyworse)inthisdatatakenfrom the

large-sta_ecase(whereperformancewas better)helpssetthe sta_eforthe followin$

sections,concerningthe benefitofthereducedmigrationrate.Clea_ly,some_llingelse

otherthan loadbalanceper eeaccountsforthe successofour loadbalancingscheme.

6.6 Overhead

The performancecomparisonsin section6.2reflectnotonlytheperformanceimprove.

ments from betterloadbalance,but alsothe counteractingcostsoftheload-balancing

mechanism. Those co6tsarequitesubstantial,and soitisinterestingtoexamine them

inisolationaswell.The loadbalancingalgorithmisexecutedby theoperator(house-

keeping)processors,so we measured theirutilization.Somewhat surprisingly;our

Bayesianscheme did not introducemuch more operatorloadthan the otherdynmnic

CHAPTER 6. PERFOtL'4A.NCE RESULTS 10_

15

J IZ5

1'°7.1

_ 5
,<

2_

r ,

r,lu,-be_xl,t_¢

avem$eleu
_cent

A
k _

;'t ",iAi,"f

i |

|
,,",,

li _ 1 t II

, V-_-I ,

]_ ",'"; "ir' ' _ t

_. ,, _ ,.A
•_//_/_.,]_ .._._,,,, ...,,, ,-.._I_

I I I | I _ I . • , , .

T_¢ (damp_dods)

Figure 6.8: Load balance achieved. This graph shows at each time the average of the

absolctevaluesofthe _iffereneesbetween the individualsites'loadsand the system-

wide a.verageload.

CHAPTER 6. PERFOI:&%fANCE RESULTS I06

schemes. With the static random allocation 7% of the operators were busy on the

a_rage. The other dynaraic schemes increased this to 18% (asem_g the larger pro-

tess s_ate size), while the Bayesian scheme only further increased it to 22%, despite

its much more complicated algorithm. (If these numbers all seem so low as £o call _he

existence d a separate housekeeping processor into question, bear in mind that the

CARE model does not account for garbage collection, which w,_s a primary purpose

for these processors.)

The statistical significance of these differences can again be assessed using

Wflcoxon's signed rank test, pairing the utilizations by pseudo-random number gener-

ator seeding (i.e., by/nitial object placement). The difference between the averageless

and recent-information schemes is not statis_icaUy significant, but the other differ-

ences sre si_miflcaat at the .02 level.

The re_on why out Bayesian scheme h_ only Slightly higher operator utilization

under these circumstances is that the additional load estimation costs of the Bayesian

algorithm are partially o_set by the savings from p_rforming fewer object migrations

and usociated communications redirections. Section 6.4 shelved that the recent-

information scheme performs 29% more migrations than the Bayesian scheme, and

the aversgeless scheme performs a full 74% more migrations than the Bayesian scheme

does. (Those numbem were obtained with _he smaller process state. With the larger

scale, the numbers increase to 30% and 82%, but this apparent dependence on state

size is statistically insi_,nific_ut.) Thus the total overhead o_ the load estimation and

object migration remains relatively invv.riant across the _hree dynamic load balancing

schemes.

With the stun|let process state size. the dl_erence in opera, or u_i|_zatton is greater:

12_ for averageless and !5% for the recent information scheme va. 20_ for our

scheme. (Again, these differences are significant, at the .02 level.) The re,con why

decreasing the migration cost decreases the overheadofotherschemes more is because

they do more migrations. Conversely, our scheme is sparing with migrations but has

high-o_'erhead load estimation; this load estimation cost isn't reduced by m,klng

migrations cheaper.

L I I i IIIII III il

CHAPT£1_ 6. PERFOI:&_fANCE RESULTS 107

6.7 The relationship between migrations

and latencies

The preceding sections have shown that the proposed load balancing system achieves

comparable load balance using many fewer object migrations than the other d_amic

schemes, and that this reduction in migrations largely compensates for the increued

a_erhead of the load estimation. However, the reduced number of migrations does far

more than that. After all, if that was the entire story, the superior application-level

performance observed under large-state conditions would remain unexplained, since

there is still slightly higher total overhead _i_h our scheme than with the others. Tiros

in order to explain superior performance in the face of slightly inferior load balance

and slight|y _'eater total overhead, we need to show a further connection between

the number of object mi_ations and the application-level output infancies.

This connection between migrations and latencies is not hard to find. An object

that is in tra_it can not be processin 8 any messages it has already received, nor

receiving further messages. Moreover, until such point as the objects sending messages

to is have been apprised of its new address, the messages will have to be forwarded

from the old site (roughly doubling the communication time). In fact, if the rate of

migration is so high as to cause the same object to be repeatedly migrated in quick

succession, a forwarding chain may result, in which messages need to be repeatedly

forwarded until they catch up with the migratins object.

In order to empirically test this explanation, we can see whether output laten-

cies are correlated with migrations by the relevant objects. Within each separate

simulation run, are the reports with longer output lstencies those where the objects

cont_ibutin8 to the report migrated many times while the report was produced? Any

global net_'ork congestion, for example, caused by the overall rate of migrations,_'ould

nor show up as a correlation between specific output latencies and the number of mi-

grations of the relevint objects. Conversely, more direct effects of the sort postulated

above would show up as a direct correlation.

In order ¢o reduce unrelated sources of variation in output la_encies, t,hi_ exper-

iment use.d only the emitter heading reports, not _he emitter fixes. This improves

CHAPTER 6. PERFOR_V.ANCE RESULTS 108

the chances that a significant correlation between migrations and latencies will be

detectable. The objects involved in producing a heading report are a superset of

those involved in producing a fix report for the same emitter.

We tested for correlation between the emitter.heading latencies sad the number

of migrations made by the relevant instances of the classes emitter-manager, em'_tter-

observation, emitter-fix and emitter-heading _thin the time from one to two data

times after the triggering observation. This is the interval during which most of

the critical-path processing occurs: there is a one data-time delay to ensure chat all

the data is input before a report is generated. A]] four of these object classes are

on the critical path for emitter heading reports; one other (the observation reader)

is as well in principle, but does not contribute to the variation in latencies at any

one time, since a single observation-render object _riggers all reports at a particular

time. Further, technical details of our experimental method prevented including the

appropriate observation-reader migrations.

W'e performed this test in each of the runs done with the averageless load-balancing

scheme, because that scheme allows the greatest range of migration counts to be

observed. Two statistical tests of nonparametric correlation ($pearmsa's r_k cor-

relation r, and the surn-squared difference of ranks) consistently produced highly

significant indications of correlation; all p-values were less than 10-' (that is, _here is

essentially no chance that the apparent correlation was coincidental).

This indicates that there is a quite real correlation between output latencies and

the number of relevant object migrations: but it does not necessarily indicate any

causality. In particular, although global effects of the migration rate are eliminated

as an explanation, it is possible that the objects that migrated were those on busy

sites, and the busyness of those sites, rather than the migrations per ee, was what

lengthened :he latencies.

Because of this doubt, we tried the experiment of increasing _he process state siT_s

by a factor of five, sad seeing whether the slope of the best-fit latency-vs-migrations

line increased. This would provide some indication that the migrations themselves

were a significant f_ctor in the latencies. As it happens, the data does bear out

this hypothesis: :he slope of the best-fit line (computed using the robust method

CHAPTER 6. PERFORMANCE RESULTS 109

of minimum absolute deviations) increased _" a median factor of 5 across the seven

pairs of runs.

This result, that the number and size of migrations influences application latencies,

help_ greatly to explain and motivate the results of section 6.2.

6.8 Migration delay

The time taken by an object migration i_ an important factor affecting the success

of dynamic load balancing mechanisn_s. The scheme proposed in this thesis is pred-

icated on the assumption that the del_" is long enough to make repeated ruination

undesirable, bur short enough that one c_ afford to do migration at all. In order to

exper/mentally measure the performance of the migration mechanism in our CARE

simulation, the various simulation runs were instrumented to record for each migrated

object the time when it began being removed from the run queue on the originating

site and the time when it was finished being inserted back into the queue of runnable

processes, but on the destination site. This includes all overhe_is of dequeueing and

enqueueing the process, encoding the graph-structured state into a linear form and

then decoding again, message transmission and reception, n:twork contention, etc.

Figure 6.9 shows that the majority of mi_ations take a fraction of a millisecond

with the smaller state size. The average is .7Sins, bur that is skewed by the long tail;

roughly three quarters of the latencies are under a millisecond. From figure 6.10 you

can see that increasing the state size by a factor of five increases the migration delays

so that many of them take a few milliseconds and a few take tens of milliseconds.

Also, you can see that. the mechanisms with more migrations have a larger proportion

mitrer.ions that take abnormally long. even though the modal migration delay is

still under a millisecond. This increase in long delays shows up quite clearly in the

average delay, whi_ ranges from 2.6ms for our scheme, through 2.9ms for the recent

information scheme, to a full 4.0ms for the averageless scheme. This is apparently th,

result of increased net_'ork contention caused by the increased number of migratione;

the larger object size used in this experiment explains why this contention effect is

more evident than in the experiments reported in figure 6.9, even though there as

CHAPTER 6. PERFORMANCE RESUrLTS 110

0.4

0.3

o.I

" • * ' ' ' • J i • __ I ,a . & J I

O_ 0.75 1._ I.TS 2.25 2.7_ :3.25 3.75 4._ 4.75 S.25 5.75 6.25 6.?S 7.25

_ay (ms)

Figure 6.9: Migration delay with small process s_&tes. The millisecond _'alues on the

x-axis of this histo_am are the center-points of .5 ms wide intervals. Each bar shows

the fraction of object migrations for which t]:e migration time fell within the indicated
inter_l. For example, the tirst bar shows that almost 42_, of object misratious took

less that half a millisecond. This histogram is aggregated over all three dynamic

load-balaucin8 schemes; there was only sligh_ vsrlation among them, with the delays

incre&sing somewhat with the number of migr&tions.

well the number of migration._ varies substantially with load-balancing method..Note

_hat the CARE cut-through network responds to contention by delivering a blocked

packet to the operator of the site at which the blockage occurred. After waiting in

that operator's queue, it is then resent into the network. This introduces a substantial

penalty for contention, providiu_ further evidence of the advantage of bein$ sparing

in migrations--one of the general strategic assumptions of t_is thesis.

CHAPTER 6. PERFOI_,fAIVCE RESULTS 111

0.23

0.2

0.150.I

0,05 ',
p

0,.
0

averaj_le_i
eo• _ewn0

- -- • , | | , ,I , J _L " - • _ ! "

5 10 15 30 25 3O 3S

!_1_ (ms)

Figure fl,lO: Migration del.sy with larger process state_. Each line connects the top-

center points of a se_ of histogram bars. each _ ha.If-millisecond wide, showing the

fraction of object migrations which took that long. This allows the three histograms
to be compared more readily than using traditional bargraphs would. The process

state size hes been infla.ted by a factor of five.

CHAPTER S. PERFOR2_A]_rCE RESULTS 112

6.9 Negotiation delays

One virtue of basing our load-estimation technique cn an explicit time-series model

of loading is that we could equally easily forecas'_ what the load will be at a future

time. In some applications, where the negotiation and execution of a migration are

slow compared to changes in system loading, it would be advantageous to forecast the

average load a bit into the future, to better reflect the situation when the migration

bein_ considered is completed. Is this the case in our experimental example? The

evidence suggests not. The primary delay between average estimation and migration

completion is the migration itself, the delay of which was discussed in the preceding

_ection. Adding in the "negotiation" time (i.e. the time for the underloaded site

to request work from the overloaded site and for the overloaded site to select which

objects to migrate) only raises the average delay for 1:he small process states to .83ms,

white with the target state size the average time only goes up to 2.Sins. If you lock at

the histograms in figures 6.11 and 6.12, you ca_ see that even with the larger state,

a large fraction of the time the total of negotiation and migration delays still is less

than the 2.Sins load balancing interval width used in these experiments. Thus, given

thatwe areonly estimatingthe los_iwith 2.5ms granularityan)way, itseems thatit

woul&t't1_y to estimatethe loadeven a singleinrerlzlintothe future.

6.10 Synthetic load experiments

In order to betterunderstand the strengthsand weaknessesof the proposed load-

balancingsystem, R isworth examining itsperformancewhen used to balance the

loadofan applicationofa radicallydifferentnaturethan ELINT. This sectionusesa

syntheticapplicationin which the objectsare allstaticallycreatedat the beginning

ofthe run,ratherthan beingdyramicallycreatedand destroyedinthe courseofthe

ran,and areorganizedintoatoroidalgridpatternofnearest-neighborcommunication,

rather¢han communicating inarbitraryd)_namicpatterns.

For an appllca_ionsuch as this,thereare two obviousobjectplacement policies,

which we'lluse inadditionto random placement. One isto map the toroidalgrid

CHAPTER 6. PERFORMANCE RESULTS 113

0.4

0,3

I
o_

J
O.1

o
! 4 I I i i I i i i i I

1.75 2.25 2"75 3,25 3.75 4.25 4,75 $.25 5.?$ 6,25 6.75 7,_

Delay(ms)

Fig_£re 6.11: Negotiation and migration delay with small process states. The mil-

lisecond values on the z-ares of this histogram are again the cen_er-points of .3 ms

wide intervals. Each bar shows the fraction of object migrations for which the time

from when the tmderloaded site requested work until the object sent in response was
enqueued on the runnable process queue fell within the indicated interval, This his-

togram is only for the Bayesian scheme, since that is where the question of delay
between est|mazion and completion arises,

CHAPTER 6. PERFORMANCE RESULTS I14

0.2

0.15

!
'I_

o.[
l=

0._

1
. i

1

l_lty(ms)

Fig.s 6.12: Negotiation and migration delay with larger process states. The his-

togram bars _re again one half r_illisecond wide, even though the x-axis is only

marked at integer millisecond points for legibiliD'. The process st.ate size has been
inflated by a factor of five. As in the preceding figure, the time intervals mee-_u_'ed

sts.rt when work is requesged and end when the received process is runnable.

CHAPTER 6, PERFORMANCE RESULTS 115

of objects onto the smaller toroidal grid of processing elements in a bloc_ fashion, so

that several (losicaliy) neighboring objects map onto the same processing element.

The other is _o do the mapping in s wmp_d or modular fashion, so that logically

neighboring objects are on physically neighboring sites.

The block allocation minimizes communication costs, but can result in poor load

balance if the loads of neighboring objects are correlated (as the}" are in our synthetic

application). The wrapped allocation increases the communication eos_, though not

to _he point of random allocation, where in general comrnunica¢ions are not only

off-site but also to a non-neighboring site. Not only does restricting communica-

tion zo nearest neighbors reduce the path length _he messages have to follow, but it

also essentially eliminates the possibility of network congestion. The wrapped object

mapping also has _he potential for good losxi bals.nce when loaded objects occur in

clusters, since neighboring objects will be on distinct sites.

One major question this section will _v,'er is how these various placement options

combine with the four object migration policies described in section 6.1. Can good

object migration make up for poor placement? Can a poor choice of migration policy

wreck even a good initial placement?

The synthetic application used in these experiments consists of 225 objects, all of

a single class, communicating with one another in a !5 by 15 toroidal grid pattern.

Each run consL_ts of 23 data intervals, each 25ms long. At the beginning of each

data interval, each object is independently selected with .05 probability to serve

as an "initiator" of acdvi_', and the selected initiators receive a triggering message

containingthe currenttime.{.Thisrandomized choiceof initiators,aswellas8,11other

randomized choices,ispre.computed and used identicallyin allruns,independentof

the choice of object placement and migration str_.tegies.) When an object receives

one of these triggering messages, it computes for one or two 100_ periods (randomly

decided) and then sends further triggering messages to randomly selected neighbors,

containing the same _ime of _cti_ty initiation _hat was received. Each message is 10

words long;the objectsthemselvesate200 words insizeinone setofexperiments,500

inanother.When an object_ooses to triggernone ofitsneighbors,_hen itoutputs

a repot-tindicatingthe time oftheoriginalactivityinitiationthatstartedthechainof

CHAPTER 6. PERFOR_ANCE RESULTS 116

triggering messages as well as the current time: the difference between _hese is taken

to be the output latency.

When an object is choosing neighbors to trigger, it effectively flips a weighted

coin for each of its neighbors to decide whether or not to trigger it. The weighting

of that coin is the same for all the neighbors, but is dependent on the length of the

chain of triggering messages from the original initiation of sctivi_. The probability

of triggering each of the four neighbors vs. 'che length of the causal chain so far is as

shown in figure 6.13. The three distinct regions are all geometric decreases, but the

initial and final regions decrease at a rate of 21% per level of depth in the causal chain

while the middle region only decreases 1% per level. The fist region is chosen 'co lie

at the .25 probability point, i.e. the steady sta'ce, where each acti,_tion triggers an

a.verage of one other activation (the fiat region continues down to .225 probability).

Thus, there is first a period of expanding activity, where each activation _riggers

several others, then a steady state period where the number of activations remains

relatively consr,_nt, end then finally a period where the activity dies out. Because

the activity spreads only to neighbors, and because the causal chains of activation

can turn back on themselves: the a_tivi_, tends to cluster in compact regions of the

object grid.

The decision as to whether _o only do one 100/_s computation or two before acti-

vating neighbors is also done using _ similar weighted probabilistic choice with shifting

probability. However, rather than being tied to the length of the causal chain, it is

based on the numbe_: of computations the receiving object has already done for this

data period. Further, the probability is increasing, rather thm_ decreasing, and lin-

early, rather thm_ (piecewise) geometrically. The probabilil'y star_s at zero each data

period and grows linearly, increasing b)' .01 each time the object is invoked (stopping

at 1, of course, even if the object should happen _o be invoked more than 100 times

in one data period).

Figure 6.14 shows the miss rate vs. threshold for this synthetic load, using the _-

sumption of 20fl-word objects. It shows all nine combination of the three placement

polici_ (block, wrap, and random) with three migration policies: static, aversgeless,

and "cheat." The "chest" migration policy _s the g_obal load balancing approach

CHAPTER 6. PERFORMA._'CE RESULTS 117

0.8

0.6

0.4

I0.2

6 -lb ' 2"o fo
l_p_ofc_u.Jcl_in

Figure 6.13: Syntheticload trigg_:rprobabilities.This shows the probabilitythat

an acti_ttedobjectwillir_turn activateeach ofitsfourneighbors,as a functionof

the number of activation_riggeringsle_dingfrom initiationto thisactivation.The

relativelyfiatregionisaround .25,i.e._he steadystatewhere each activationc_uses

an ave_sgeofo_e otheractivation.

CH.dPTF_R6. PERFOP_%fANCE RESULTS 118

studied in this thesis, with the costs of our load estimation method using time-series

analysis and Bayesian inference accounted for, but with the actual system-wide aver-

age load used rather than the estimate. This is because this synthetic load was not

subjected to the ARIMA modeling process. Thus, this evidence reflects the ideal of

global load balancing and the costs needed to realize that ideal, but takes for granted

that the load can be adequately modeled. In this sense it complements the modeling

done for AmTRAC-DA, where the load was successfully modeled, but no actual load

balancing simulations were done.

The best sad worst performers in this figure are both r.ratic schemes, namely the

wrapped and block allocation. The third static scheme, random placement, fares

almost as poorly as block placement. Using averageless migration brings all the per-

formance cu2ves together, worsening the performance with wrapped allocation but

improving it with r_mdom and block allocation, so that the resulting performance

works out about the same independent of the initial placement. The results _th the

cheating version of our proposed scheme are more interesting. The performance with

wrapped allocation is hurt less than with averageless migration sad the performance

with random allocation improved more, so that these two _nd up performing com-

parably to one another and better than the tbres placements do using averageless

migration. However, the performance with block allocation is not improved nearly as

much. Presumably the clustering of neighboring objects on sites is so pessimal a load

balance s8 to require more aggressive migration than our scheme can muster.

It is interesting to again see the impact of migration cost on performance, as we did

with ELINT, since the smaller number of migrations is a key distinguishing feature of

our load balancing scheme. (The various "cheat" runs done with this synthetic load

ranged from 707 to 806 migrations, while the aversgeless runs ranged from 1630 to

1894.) Therefore: figure 6.15 shows the situation when the objects are ineremed in

size to 500 words. (This figure emits block allocation', it seems there would be little

reason for anyone ¢o use block allocation for this application. Wrap and random

are both plausible, the former because it of its good performance and the latter

because it r_uires little thought of the programmer.) Here the averageless scheme,

with its high migration rate, mana_ to thoroughly ruin the performance of even

CHAPTER6. PERFORMANCE P,_SULTS 119

I

m,x ss!l_

Figure 6.14: Synthetic load, 200 word object size,

CHAPTER 6. PERFOIhVIANCE RESULTS 120

%

De.adli_¢(clamIx_i_s)

Figure 6.15: Synthetic load. 500 word object size.

wrapped aUocation,making itsubstantiallyworse than random allocationleftalone.

The scheme proposed by thisthesis,by contrast,shows the potentialto improve on

random aUocation,providedthatthe averageloadcan be accuratelyestimated.And,

althou_ substantialdamage isdone to the wrapped allocationperformance,i¢still

winds up superiorto tJmtwith random allocation.

6.11 Summary of performance results

This chapter provided an empirical assessment of our algorithm's experimenlal imple-

mentation from the prsvlouschapter.Rather than simplyjudgingthe loadbalancing

method as a "_uccess"or "failure,"thischapterprovidesstatisticalevidencebearing

on each ofthe individualfactorsunderlyingthe overalloutcome. In particular,we've

seen that:

CHAPTER 6. PERIOIL%IANCE RESULTS 121

Our Bayesian inference technique provides load estimates two to three times

better than are possible using only recent information or only information old

enol_gh to be reliably representative of the whole system.

As a result, load balance comparable to other dynamic schemes is achieved with

20-40% fewer migrations.

This decrease in migrations partially offsets the increased overhead, especially

in our experiments with higher migra¢ion costs, where the total operator loacl

imposed by our scheme is only about one-third higher than that imposed by

the orb.or dynamic scheme.

The decrease in migrations also is salutary for application-level latenci_s, since

the latencies of output reports are strongly associated with the time the relevant

objects spend migrating.

h our ,Jxpefiments with larger object sizes, the decreased number of migrations

also reduced the proportion of migrations that took unusually long, presumably

by decreasing network congestion.

Chapter 7

Conclusions and Open Questions

We _ow summarize the problem addressedinthe _hesis,the methods applied1o solve

thatproblem, and the degreeto which that solutionproved successful.That done..

we willconcludewith a list.ofsome interestingquestionsleftopen forfutureresearch.

T.1 The problem

In a modern ensemble machine with a low-latencyinterconnectionnetwork, it is

feasibleto migrate computationalobjectsbetween any pairofprocessingelements.

With the opportunitiesforwork transferwide ope_,the challengethen becomes to

strategicallychoosewhich sitepairsshould actuallytransferwork.

The introductorychapternotedthatina real-timesystem,thereisstrongincentive

to reducethe number ofobjectmi_ations,sinceeachmigrationextendsthe latency

of any data flowingthrough the migrated object. One way to reduce migrations

might be to sacrificeload balance:however, thiswould alsosabotagethe real-time

performancegoalofconsistentlyshortlatencies.

Therefore,we are calledupon to balancethe processingloadsbut do so with the

minimum possiblenumber ofobjectmigrations.Thishas a number ofconsequences;

forexample,itmotivatesour use ofthe greedyheuristictoselectwhich objectsto mi-

gratebetween a particularpairofsitestotransfera specificamount ofload.However,

stayingwith the narrowerquostionofwhich sitesshouldbe chosen,theconclusionwe

122

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 128

reach is this: work should only be moved from overloaded sites to underloaded sites.

Any object migration between two sites on the same side of the system-wide average

load is a migration that can be avoided without sacrificing bMance.

This c_iterion--flobal load balancing--is as difficult to implement as it is attrac-

tive. In order for a site to identify itself (or a communication partner) as a potential

load donor or recipient, it must have available the current average over the process-

ing elements of their loads. This information should ideally be both up-to-date and

global in scope--apparently conflicting goals in the large-scale ensembles targeted by

this thesis.

The problem shat has been addressed by this thesis is to circumvent _.his impos-

sibili D, by instead producing a statistics/estimate that accurately mirrors the actual

current system-wide load using only much more limited information dissemination.

7.2 The solution

Chapter four show_ how to use explicit models of the load's variation over time sad

of the randomized information dissemination in order to produce accurate estimates

of the current global load.

The distributed averaging process we examined called for each site to periodically

multicast its estimate of the average to a randomly chosen subset of the other sites.

Each sit_ recomputes its estimate each inter_,l as the a_rage of those estimates it

received in the past interval mid its own previous estimate. This produces estima,¢es

that improve with age; in particular, their variance dec::eases geometrically with the

number of improvement inter_'ais.

Using a realistic model of how the muiticast breadth affects the interval length

necessary to stay within a fixed resource budget, we _re able to compute an optimal

breadth which best trades off interval length agLinst improvement per interval.

In addition to this optimization of the algorithm's parameter, the model of how

the estimates improve _ith. age provided one of the two foundations necessary for

an-appropriate integration of estimates of varying ages. The other nee_._d element,

namely a model of how _he past loads vary in relevance to the current load, was

CHAPTER 7. CONCLUSIONS AND OPEN QLT.,STIONS 124

also presented in the same chapter, in the form of ARIMA time-series modelling.

Multiplicative IMA models were used to capture the statistical structure in the Airtrac

and ELLNT loads.

These two models in hand, a multi_m'iate Bayesian inference allowed an optimal

set of weights to be calculated for estimating the current load from the observed past

loads. Analysis suggested that this could achieve considerably better results than

using either only data old enough to be reliable or using only recent data.

7.3 Outcome and open questions

Although the formulation and solution of the load estimation problem is a major

contribution in its own right, it is equally import.ant to consider the empirical results

achieved using these techniques. Chapter six presented these results, obtained using

the implementation from chapter five.

One of the strongest experimental r_ults is that the use. of global load balancing

(i.e. estimates of the system-wide average load) significantly reduces the number cf

object migrations without substantially detracting from load balance.

Another clear result is that the number of object migrations is strongly correlated

to the application-level output latencies. Moreover, as migrations become more costly,

the impact on latencies is corresponding_.y increased.

These two experimental results combine to validate the basic premise of the thesis:

for the class of real.time systems under consideration, global load balancing is an

attractive approach to achieving consistently low latencies, because it can balance

the load without incurring the costs of excess object migrations.

Beyond demonstrating the virtues of global load balancing as an objective, the

experimental evidence oleo bears on the question of whether the proposed techniques

can actually provide the inexpensive, accurate system-wide load estimates needed

to achieve that object,re. The results regarding accuracy of the load estimates are

encouraging; although the improvement over using only recent in¢,_rmation was not as

large as had been predicted, it was still substantial, as was the improvement over only

using information old emough to be representative of the entire system. (Moreover;

I " I In _ii I II

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS !_5

the improvement over using only recent information is the area where scaling up to

a more realistic ensemble size is most likely to help.)

The proposed global load-balancing technique had its weakest showing in the area

of overhead costs. The load estimation costs were so high that even with the larger

of the two migration costs used in the experiments, the dramatically smaller number

of migrations didn't fully compensate for the overhead. It is this high overhead that

most ca!Is into question the wisdom of the proposed technique, especially in systems

with low object migration costs.

However, better application-level performance was achieved even wi_h a slight net,

increase in overhead, because the number of migrations impacts _he output latencies

other than jus_ b.v influencing overall overhead. Since this relation between migrations

sud]atencies is stronger with larger migration costs and the net overhead difference

is also smalle_ in that case, it is ,_ot surprising that the experimental results showed

an improvemen_ in performance only with the more expensive migrations.

The synthetic load experiments suggest that global load balancing can also be

useful to compensate for lack of a good static mapping in highly regular computations,

again especially when migrations are relatively expensive. However, not surprisingly,

whez_ a good static mapping is available, it is preferable tc any kind of dynamic object

migration.

Assessing the overall outcome of this experimentation, _he proposed techniques

for global load estimation and global load balancing _,ere shown to be fundamen-

tally promising and to largely achieve their intended objectives. However, the net

improvement in application-level performance v'as quite small, and even that was

only possible when object migration delays were increased to several times the typi-

cal method execution times. In s system closely comparable to the experimental one.

therefore, the proposed techniques do not seem to warrant their high complexity l'or

practical application.

However, in systems with higher penahies for n_igr_tion and in which broa_ily

representative data on system lo_diug is not quickly available, our approach would bc

more attractive. It is worth noting that in our experiments the c]o_e competitor for

performance is the recent-information scheme, which is precisely the one which might

CHAPTER 7. CONCLUSIONS AND OPEN QUESTIONS 126

be expected to suffer the most from scale-up. (This is one of the most important of

the open questions listed below.)

Another important area for further research would be the application of our basic

load eat/marion ideas to a coarser-grained application running on a distributed net-

work of separate workstation computers. This sort of environment might well have

costly enough migrations to warrant a global balancing approach, while ha_ing suffi-

ciently slow 81obal information dissemination zo warrant using our time-series model.

The basic principle demonstrazed in this thesis, which may be useful in this or other

domains, is that $he time evolution of load can have exploitable structure, making it

possible to judge potential migrations by a strict, global standard i_ the absence of

up-to-date global information.

_j • [•

Bibliography

[1] G.A. Agha. Actors: A Modet of Concurrent Computation in D_tributed Systems.

MIT Press,1986.

[2]Noga Alon, Amnon Barak, and Udi Manber. On disseminatinginformation

reliablywithoutbroadcasting.In The SerenthInternationalConferenceon Dis-

tributexlComputing Swtems, pages 74-81,September 1987.

[3]Ramune Arlauskas.iPSC/2 system: A second generationhypercube. In The

Third Conference on Itltpercube Concurrent Computers and Applications, pages

38--42.ACM Press,January 1988.

[4]Yeshayahu Array,Hung-Yang Chang, and Raphael Pinkel.Processesmigratein

Charlotze.TechnicalReport 665,Computer SciencesDepartment, Universityof

Wisconsin-Madison,Aagust I986.

[3] William C. Athas. Fine grainedconcurrentcomptttstions.TechnicalReport

5242:TR:87,CaliforniaInstituteofTechnologyDepartment ofComputer Science,

May 1987.Ph.D. thesis.

[6]Amnon Barak and Zvi Drezner.Distributedalgorithmforthe averageloadofa

multicomputer.TechnicalReport CRL-TR-17-84, Computing Research L_bora-

tory,UnivemityofMichigan,March 1984.

[7]Am.non Barak and Yoram Kornatzky. Design principlesof operatingsystems

forlargescalemulticomp_Iters.Research Report RC 13220,IBM T. J.Watson

Research Center,October 1987.

127

BIBLIOGRAPHY 128

[9]

[11]

[n]

[13]

Amnon Barak and Amnon Shiloh. A distributed load-balancing polio' for a

multicomputer. $o_ware--Practice oru] Ez_rience, 15(9):901-913, September

1985.

[10]

Katherine M. Baumgartner and Benjamin W. 'W_. Load balancing protocols on

a local computer .system with a multiaccess network. In Proceedings of the 1987

/nternat_o_t Conference on Pamllet Proteus,,g, ps.ges 851-858. The Pennsylva-

nia State University Press, 1987.

Shekhar Borl_r et al. iWarp: An integratedsolutionto high-speedparallel

computing. In $_percornFuting'88,November 1988.

George E. P. Box and Gwilym M. Jenkins. Time SeriesAnaIpsis:Forecast{ng

and Contro£ Holden-Da.yInc.,1976.

Harold D. Brown, Eric Schoen, and Bnce A. Delagi. An experiment in

knowledge-basedsignalunderstandingusingparallelarchitectures.TechnicalRe-

port.STAN-CS-86-1136, Department of Computer Science,StanfordUniversi_-,

October 1986.

Gregory T. Byrd, Nakul P.Sarmya, and Bruce A. Delsgi.Multicastcommun/ca-

tion in multiprocessor systems. In International Coherence on Pora/le! Process-

ing, volume I,pages 190-200.The PennsylvaniaStateUniversityPress,August

1989.

Clemens H. Cap and VolkerStrumpen. The Parform--a high performanceplat-

form forparallelcomputing ina distributedworkstationenvironment.Technical

Report ifl-92.07, Institut f6rInformatik, Universit_.tZiifich, June 1992.

Hung-Yang Chang. Dynamic schedulingalgorithmsfordi_ributedsoftreal-tLrne

systems. TechnicalReport 728,Computer SciencesDepartment, Universityof

Wisconsin-Madison, 1987. Ph.D. thesis.

Timothy C. K. Chou and Jacob A. Abraham. Distributedcontrolof computer

systems]EEE _ansact_ons on Computers,C-35(6):564-567,June 1986.

iiii i i __

BIBLIOGRAPHY 129

[lS]

[9l

[2al

[22]

[23]

[24]

psi

Shyamal Chowdhur_,.The greedyloadsharingalgorithm.TechnicalReport 87-

23,Depa._ment of Computer Science,The UniversityofArizona,August 1987.

William J.Dally.Wire-e_cientVLSI m_tiprocessorcommunicationsnetworks.

In Aduancsd Researchin VLSI: Proceedingsof the 1987 Stanfo_ ConJerence,

pageS391-415.The MIT Press,1987.

Bruce A. Delagi,Nakul Saraiya,Greg Byrd, and SayuriNishimura.CARE user

manual. TechnicalReport KSL-88-53, Knowledge Systems Laboratory,Corn-

purer ScienceDepartment, StanfordUnivemity,September 1990.Version0 (for

Release0).

Bruce A. Delag;and Nakul P. Saraiya.ELINT in LAMINA: Applicationof a

concurrentobjectlanguage.SIGPLAN Notices,24(4):194-196,April1989.

Bruce A. Dehgi, Nakul P. Saraiya,_.ndGregory T. Byrd. LAMINA: CARE

applicationsinterface.TechnicalReport KSL-86-67,Knowledge Systems Labo.

re.tory,Computer ScienceDepartment,StanfordUniversity,November 1987.

ZviDreznerand Amnon Barak.A probabilisticalgorithmforscatteringinforma-

tionin s multicomputer system. TechaicalReport CRL-TR-15-84, Computing

Research Laboratory,Unive._sityofMichigm_,March 198#,.

Zvi Drezner and Amnon Barak.An asynchronousalgorithmforscatteringinfor-

mation between the activenodes ofa multicomputersystem.Jou_al ofParallel

and Distributed Computi.9, 3(3):344-351, September 1386.

Derek L.Eager,Edward D. Lazowska,and John Zahorjan.Adaptiveloadsharing

in homogenous distributed systems./EEE Transactions on _%fl,vare Engineering,

SE-12(5):6S2-675,May 1986.

Derek L. Eager,Edward D. Lazows_, and John Zahorjan. A comparison of

receiver-initiatedand sender-initiatedadaptiveloadsharing.PerformanceEval.

uation,6(i):53-68,March 1986.

BIBLIOGRAPHY 130

[26]D. F. Ferguson,Y. Yemini, and C. N. Nikolaou. Microeconomic models for

resourcesharingin a multicomputer.Research Report RC 12792,IBM T. J.

Watson Research Center,May 1987.

[27]Donald Ferguson,Yechiam Yernini,and ChfistosNikolaou. Microeconomic al.

gorithms forloadbalancingindistributedsystems.In InternationalConference

on DistributedComputer $11stems,pages 491-499.IEEE, 1988.

{28]Robert Joseph Fowler.Decentralizedobjectfindingusingforwardingaddresses.

TechnicalReport 85-12-I,Department ofComputer Science.Universityo£Wash-

ington,December 1985. Ph.D. thesis.

[29]Dirk C. Grunwald. Circuitswitchedmulticomputersand heuristicload place-

ment. TechnicalReport UIUCDCS-R-89-1514, Department ofComputer Science,

UniversityofIllinoisat Urbana-Champalgn, September 1989.Ph.D. thesis.

[30]Max Hailperin. Load balancingformassively-parallelsoft-real-thnesystems.

TechnicalReport STAN-CS-S$-1222, Department ofComputer Science,Stanford

University, August 1988.Alsoappearedincondensed form in ._t_ntiers'aS: The

Second S_lmposium on the]q'ontiers of Massively Parallel Computation.

[31] Robert H. Halstead, Jr. and Stephen A. Ward. The MuNet: A scalable decen-

tralized architecture for parallel computation. In Proe. 7th Annual Symposium

on Computer Architecture,pages 139-145,May 1980.

[32]J. P. Huang, J. C. Sh_, and T. L. Maehleit.Load balancingof a distributed

radar system tes_driver.In ProceedingsReal-Time 8_stems Sllmposium,pages

133-140,December 1982.

[33]Bernardo A. Hubermsn and Tad Hogg. The behaviorofcomputationalecologies.

In B. A. Huberman, editor,The Ecol_p o/Computation, pages 77-115.E_se_der

SciencePublishersB.V. (North-Holland),1988.

[34]Paul Hudak and Benjamin Goldberg. Experiments in diffusedcorrbinatorre-

duction.In I9£¢ ACM Symposium on Lisp and Functional Programming, pages

167-176,August 1984.

i i II

BIBLIOGRAPHY 131

[ss]

[40]

[41]

[42]

[43]

Jie-Yong Juang and Benjamin W. Wah. Load balancing and ordered selections

in a computer system with multiple contention buses. 3ourn_! of Parallel _nd

Distr-/buted Comput/.g, 7(3):391-415, December 1989.

EricJul. Object mobilityin a distributedobject-orientedsystem. Technical

Report 88-12-06,Department of Computer Science,Universityof Washington,

December 1988.Ph.D. thesis.

L.V. Kale. Compaxing the performanceoftwo dynamic loaddistributionmeth-

ods. In Proceedings of the 1988 International Conference on Parallel Processing,

volume I,pages 8-12.The Pennsyh'aniaStateUniversityPress,August 1988.

Richard Korry.A loadsharingalgorithmfora workstationenvironment.Tech-

nicalReport 86-10-03,Depaxtment ofComputer Science,UniversityofWashing-

ton,October 1986.MS. thesis.

PhillipKrueger and Raphael Finkel.An adaptiveloadbalancingalgorithmfor

a multicomputer.TechnicalReport 539,Computer SciencesDepartmen% Uni-

versityofWisconsin-Madison,April1984.

Phillip Krueger and Miron Livny.Load balancing,loadsharingand performance

i_ distributed systems. Technical Report 700, Compu'cer Sciences Department,

University of Wisconsin-Madison, August 1987.

PhillipE. Krueger.Distributedschedulingforachangingenvironment.Technical

Report 780,Computer SciencesDepartment, UniversityofWisconsin-Madison,

June 1988.Ph.D. thesis.

James F.Kurose and Ren,_Chipalkatti.Load sharinginsoftreal.timedistributed

computer systems.IEEE Transactionson Computers,C-36(8):993-I000,August

1987.

Frank C. H. Lin and Robert M. Keller. Gradient model: A demand-driven

load balancingschcme. In The SizthInter_mt_onalConference on Distributed

Computing SIistems, pages 329-33G, 1986.

BIBLIOGRAPHY 132

Samprakash Msjumdar and Michael L. Green. A distributedrealtime resource

manager. In Distributed Data Acquisition, Computing, and Control S_mposium,

pages 185-193, December 1980.

Russell Nalmno and Mssafumi Minsmi. Experiments with a knowledge-based

system on a multiprocessor. Technical Report STAN-CS-87-1188, Department

of Computer Science, Stanford University, October 1987.

[46]David M. h'icol. Mapping a battlefield simulation onto message-passing parallel

architectures. In Distributed Simulation 1988, pages 141-146. The Society for

Computer Simulation, 1988.

David M. R'icol and Jr, Paul P. P_ynolds. Optimal dynamic remapping of data

parallel computations. IEEE 7_nsactions on Computers, 39(2):206-219, Febru-

ary 1990.

[48] David M. l_'icol, and Joel H. Saltz. Principles for problem agsregation and

signment in medium scale multiprocessors. Technical Report 87-39, Institute for

Computer Appllcations in Science and Engineering, September 1987.

[49] Joseph Carlo Pasquale. Intelligent decentralized control in large div_ributed com-

puter systems. Technical Report UCB/CSD 86/422, Computer Science Division

(EECS), University of Califonis, Berkeley, April 1088. Ph.D. thesis.

[5o] Krithi P,.smamritham, John A. Scankovic, and Wei Zhao. Distributed s_edul-

ins of tasks with deadlines and resource requirements. Technica_ Repo_ 88-92,

Department of Computer and Information Science, University of Massachusetts

at Amherst, October 1988.

[51l T. M. P_vi and David Jefferson. A basic prozocol for routing messages to migrat-

ing processes. In Proceedi.gs of the I988 International Confe_nce on Parallel

Processing, volume II, pages 188-197. The Pennsylvania State University Press,

August 1988.

BIBLIOGRAPHY 133

[52] Thirumalai Muppur Ravi. Routing messages to migrating processes in lsrge

distributed systems. Technical Report CSD-890049, University of California at

Los Angeles Computer Science Department, August 1089_ Ph.D. ehesis.

[53] James Rice. The Advanced Architectures Project. Technical Report KSL 88-

71, Knowledge Systems Laboratory, Computer Science Department, Staaford

University_ December 1988.

[54]Nakul P. Saraiya,Bruce A. Delsgi,and SayuriNishimura. Designand perfor-

mance evaluationofa parallelreportintegrationsystem.TechnicalReport KSL-

89-16,Knowledge Systems Laboratory,Computer ScienceDepartment,Stanford

University,April1989.A condensed versionof_hispaper was publishedas [20].

[55]Wei Shu and L. V. Kal6. Dynamic schedulingofmedium-grained processeson

multicomputers.TechnicalReport UIUCDCS-R-89-1528, Department ofCom-

puterScience,UnivemityofIllinoisatUrbana-Champaign, May 1989.

[56]3ohn A. Stanko_ic.An applicationofBayesian decisiontheory"to decentralized

control of job scheduling. 1EEE Transactions on Computers, C-34(2):117-130.

February 1985.

[57]Marvin NI. Theimer and Keith A. Lantz. Finding idle machines in a

workstation-baseddistributedsystem. IEEE _m_action# on SoftwareEng{.

n_ring, 15(iI):1444--1458,November 1989.

[58]BrianK. Toffy.An operatingenvironmentfortheJellybeanMachine.Bachelor's

thesis,MassachusettsInstituteofTechnolo_; May 1988.

[59]Minoru Uehara and Mario Tokoro. An adaptiveloadbalancingmethod in the

computationalfieldmodel. OOP$ Messenger,2(2):I09-I13,April 1991. Pro-

ceedingsof the ECOOP-OOPSLA Workshop on Object.basedConcurrentPro-

s,ramming.

{60]Carl A. WaIdspurger,Tad Hogg, Bernardo A. Hubermsa, JeffreyO. Kephart,

and ScottStornetta.Spawn'.A distributedcomputationaleconomy. Technical

report,Dyamics ofComputation Group,Xerox PaloAltoResearchCenter,1989.

BIBLIOGRAPHY 134

[61]

[62]

[63J

[65]

Yung-Terng Wang and Robert 3".T. Morris.Load sharingindistributedsystems.

IEEE Tnznsactionson Comp_tera:C-34(3):204-217,March 1985.

Mark Williams,HaroldBrow'..-and TerryBarnes.TRICERO designdescription.

TechnicalReport ESL-NS53_, ,_SL.Inc.,May 1984.

Songnian Zhou. Performance studiesofdynamic load balancingin distributed

systems. TechnicalReport UCB/CSD 87/376, Computer Science Division

(EEC$), UniversityofCalifonia.Berkeley,October 1987.Ph.D. thesis.

Songnian Zhou, Xisohu Zheng,Jingwen Wang: and PierreDelisle.Utopia:A load

sharingfacilityforlarge,heterogeneousdistributedcomputer systems.Technical

Report CSRI-257, Computer Systems ResearchInstitute,UniversityofToronto,

April1992.

Glenn 2<_rpette.The power ofparallelism.IEEE Spectrum.29(9):28-33,Septem-

ber 1992.

' L_ _1 - ____

